Creating Excel files with Python and
XisxWriter
Release 3.0.2

John McNamara

November 01, 2021

CONTENTS

Introduction 3
Getting Started with XlsxWriter 5
2.1 Installing XIsxWriter e 5
2.2 Runningasample program oL e e e e e 6
2.3 Documentation. e 7
Tutorial 1: Create a simple XLSX file 9
Tutorial 2: Adding formatting to the XLSX File 13
Tutorial 3: Writing different types of data to the XLSX File 17
The Workbook Class 21
6.1 Constructor. e e e e 21
6.2 workbook.add worksheet() e 25
6.3 workbook.add_format() 26
6.4 workbook.add chart() 27
6.5 workbook.add chartsheet() Lo 28
6.6 workbook.close(). e e 29
6.7 workbook.set_size() 30
6.8 workbook.tab_ratio() 30
6.9 workbook.set_properties() 31
6.10 workbook.set_custom_property()o 33
6.11 workbook.define_name() e 35
6.12 workbook.add_vba_project() 37
6.13 workbook.set_ vba name() e 37
6.14 workbook.worksheets() 37
6.15 workbook.get worksheet by name() 38
6.16 workbook.get default_url_format()o oo 0oL 38
6.17 workbook.set calc mode() 38
6.18 workbook.use_zipB4() 39
6.19 workbook.read_only_recommended() 39
The Worksheet Class 41
7.1 worksheetwrite() e 41

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10
711
712
7.13
714
7.15
7.16
717
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27
7.28
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.38
7.39
7.40
7.41
7.42
7.43
7.44
7.45
7.46
7.47
7.48
7.49

worksheet.add write_handler() 44
worksheet.write_string() oL 45
worksheet.write_number() 47
worksheet.write_formula() 47
worksheet.write_array formula() 49
worksheet.write_dynamic_array_formula() 50
worksheet.write_blank() e 51
worksheet.write_boolean() L 52
worksheet.write_datetime() 52
worksheet.write_url() e 53
worksheet.write_rich_string() o 56
worksheet.write_row() L L 58
worksheet.write_column() 59
worksheet.set_ row() e 60
worksheet.set_row_pixels()o 62
worksheet.set_column() 62
worksheet.set_column_pixels() L 64
worksheet.insert_image() e e 65
worksheet.insert_chart() o 69
worksheet.insert_textbox()o 71
worksheet.insert_button() 73
worksheet.data_validation() L 75
worksheet.conditional_format() 77
worksheet.add _table() 79
worksheet.add_sparkline() 79
worksheet.write_comment() 81
worksheet.show_comments() e 83
worksheet.set_comments_author() 83
worksheet.get name() e e 84
worksheet.activate() e 84
worksheet.select() e e 85
worksheet.hide() e 85
worksheet.set_first_sheet() L L 86
worksheet.merge range() e 87
worksheet.autofilter() L 89
worksheet.filter_column() 90
worksheet.filter_column_list() 91
worksheet.set_selection() e 92
worksheet.set_top_left_cell() 92
worksheet.freeze_panes() e e 93
worksheet.split_panes() e 94
worksheet.set_ zoom() e e 95
worksheet.right_to_left() 95
worksheet.hide_zero() o e 96
worksheet.set_background() Lo 96
worksheet.set_tab_color() 98
worksheet.protect() e 98
worksheet.unprotect_range() L 99

8

9

7.50
7.51
7.52
7.53

worksheet.set_default_row() . .
worksheet.outline_settings() . .
worksheet.set_vba_name() . . .
worksheet.ignore_errors()

The Worksheet Class (Page Setup)

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21

worksheet.set_landscape() . . .
worksheet.set_portrait()
worksheet.set_page_view() . . .
worksheet.set_paper()

worksheet.center_horizontally()

worksheet.center_vertically() . .
worksheet.set_margins()
worksheet.set_header()
worksheet.set_footer()
worksheet.repeat_rows()
worksheet.repeat_columns() . .
worksheet.hide_gridlines() . . .

worksheet.print_row_col_headers()
worksheet.hide row_col_headers()

worksheet.print_area()
worksheet.print_across()
worksheet.fit_to_pages()
worksheet.set_start_page() . . .
worksheet.set_print_scale() . .

worksheet.set_h_pagebreaks()
worksheet.set_v_pagebreaks()

The Format Class
Creating and using a Formatobject

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19

Format Defaults
Modifying Formats
Number Format Categories . . .

Number Formats in differentlocales
Format methods and Format properties

format.set_font_name()
format.set_font_size()
format.set_font_color()
format.set_bold().
format.set_italic()
format.set_underline()
format.set_font_strikeout() . . .
format.set_font_script()
format.set_num_format()
format.set_locked()
format.set_hidden()
format.set_align()
format.set_center_across() . . .

9.20 format.set_text wrap() e 140

9.21 format.set_rotation() e 141
9.22 format.set_reading_order() 142
9.23 format.set_indent() e 142
9.24 format.set_shrink(). e 143
9.25 format.set_text justlast() 144
9.26 format.set pattern() L e 144
9.27 format.set_bg_color() 144
9.28 format.set_fg color() e 145
9.29 format.set_border() 145
9.30 format.set_bottom() e 146
9.31 format.set top() e 146
9.32 format.set_left() e 147
9.33 format.set_right() e 147
9.34 format.set_border_color() 147
9.35 format.set_bottom_color(). e 147
9.36 format.set_top_color() e 148
9.37 format.set_left color() e 148
9.38 format.set_right_color() 148
9.39 format.set_diag border() 148
9.40 format.set_diag type() o e 149
9.41 format.set_diag color() e 149
10 The Chart Class 151
10.1 chartadd_series() o o o e 153
10.2 chart.set_x_axis() o o o i i e e e 155
10.3 chart.set y axis() o e e e 162
10.4 chart.set_Xx2_axiS() o i i e e e 162
10.5 chart.set_y2 axis() i e e e 163
10.6 chart.combine() e 163
10.7 chart.set_size() o e e 164
10.8 chartset title() o 165
10.9 chartset_legend() o L 166
10.10chart.set_chartarea() 168
10.11chart.set_plotarea() o o o e e 169
10.12chart.set_style() o o e 170
10.13chart.set_table() e 171
10.14chart.set_up _down_bars() e 172
10.15chart.set_drop_lines() e 173
10.16chart.set_high_low_lines() e 174
10.17chart.show_blanks_as() 175
10.18chart.show_hidden_data() 175
10.19chart.set_rotation() 176
10.20chart.set_hole_size() o o o e 176
11 The Chartsheet Class 177
11.1 chartsheet.set_chart() o 178
11.2 Worksheet methods 178

11.3 Chartsheet Example 179

12 The Exceptions Class 181
12.1 Exception: XlsxWriterException 181
12.2 Exception: XIsxFileError e 181
12.3 Exception: XlsxlnputError 182
12.4 Exception: FileCreateError 182
12.5 Exception: UndefinedlmageSize oo o 182
12.6 Exception: UnsupportedimageFormat 183
12.7 Exception: FileSizeError e 184
12.8 Exception: EmptyChartSeries 184
12.9 Exception: DuplicateTableName, 185
12.10Exception: InvalidWorksheetName 185
12.11 Exception: DuplicateWorksheetName 186

13 Working with Cell Notation 187
13.1 Rowand ColumnRanges e 188
13.2 Relative and Absolute cell references o oo 188
13.3 Defined Namesand Named Ranges 188
13.4 Cell Utility Functions e 189

14 Working with and Writing Data 193
14.1 Writing data to a worksheetcell 193
14.2 Writingunicode data e 195
14.3 Writing listsofdata 195
14.4 Writingdictsofdata 199
145 Writing dataframes e 200
14.6 Writing user definedtypes 201

15 Working with Formulas 207
15.1 Non US Excel functionsandsyntax 207
15.2 FormulaResults 208
15.3 Dynamic Array SUPPOrt o e e e e e 209
15.4 Dynamic Arrays - The Implicit Intersection Operator “‘@” 211
15.5 Dynamic Arrays - The Spilled Range Operator “#” 213
15.6 The Excel 365 LAMBDA() function 214
15.7 Formulas added in Excel 2010 andlater., 216
15.8 Using Tablesin Formulas e 221
15.9 Dealing with formulaerrors 221

16 Working with Dates and Time 223
16.1 Default Date Formatting 226
16.2 Timezone Handling 227

17 Working with Colors 229

18 Working with Charts 231
18.1 Chart Value and Category AXeS i i i i i i e e e e e e 232
18.2 Chart Series Options e e 237

18.3 Chartseriesoption: Marker L 238

18.4 Chart series option: Trendline 239
18.5 Chartseriesoption: ErrorBars e 243
18.6 Chart series option: Datalabels 245
18.7 Chart series option: Custom Datalabels 253
18.8 Chartseriesoption: Points 257
18.9 Chart series option: Smooth 258
18.10Chart Formatting e 259
18.11Chart formatting: Line 260
18.12Chart formatting: Border L 263
18.13Chart formatting: Solid Fill 263
18.14Chart formatting: Pattern Fill 265
18.15Chart formatting: Gradient Fill 268
18.16Chart Fonts. e 270
18.17Chart Layout 272
18.18Date Category AXeS o i e e e e e 274
18.19Chart Secondary AXes L 274
18.20Combined Charts e 276
18.21Chartsheets e 278
18.22Charts from Worksheet Tables, 279
18.23Chart Limitations e 280
18.24Chart Examples e e e 280
19 Working with Object Positioning 281
19.1 Object scaling due to automatic row height adjustment 282
19.2 Object Positioning with Cell Moving and Sizing 283
19.3 Image sizingand DPI e 286
19.4 Reporting issues with image insertion 286
20 Working with Autofilters 287
20.1 Applying an autofilter 287
20.2 Filterdatainanautofilter 288
20.3 Setting a filter criteriaforacolumn Lo Lo oo 289
20.4 Settingacolumn listfilter 290
20.5 Example e e 292
21 Working with Data Validation 293
21.1 data_validation() e e 295
21.2 Data Validation Examples 302
22 Working with Conditional Formatting 305
22.1 The conditional_format() method L o 308
22.2 Conditional FormatOptions e 310
22.3 Conditional Formatting Exampleso 329
23 Working with Worksheet Tables 331
23.1 add_table() e e 332
23.2 data e e e 333

Vi

23.3 header row L e e e
23.4 autofilter e e e e
23.5 banded rows e e
23.6 banded columns e e e e e e
23.7 first_ column e e e
23.8 last_column e e
23.9 style e
23.10Name L e e e e e e e e
23.11total_row . . . e e e
23.12C0IUumMNS . . . L e e e
23.13Example e e

24 Working with Textboxes
241 Textboxoptions e
24.2 Textbox size and positioning
24.3 Textbox Formatting e
24.4 Textbox formatting: Line
24.5 Textbox formatting: Border e
24.6 Textbox formatting: Solid Fill
24.7 Textbox formatting: Gradient Fill oo
24.8 Textbox formatting: Fonts
24.9 Textbox formatting: Align L
24.10Textbox formatting: Text Rotation
24 11Textbox Textlink e
24 12Textbox Hyperlink o o o
24.13Textbox Description e
24.14Textbox Decorative e

25 Working with Sparklines
25.1 The add_sparkline() method
25.2 TaNQE e e
25.3 1YPe . . .
25.4 style. e
255 markers
25.6 negative_points L L e e e
25.7 aXiS . . . e
25.8 rEVEISE e
25.9 weight. L e
25.10high_point, low_point, first_point, last_point
25.11max, MIN o e e e e e e e e e e e e e e e e
25.12empty_cells
25.13show_hidden e e
25.14date_axis e e e
25.15series_Color L e e e e e
25.16location L e
25.17Grouped Sparklines L.
25.18Sparkline examples L e

vii

26 Working with Cell Comments
26.1 Setting Comment Properties L

27 Working with Outlines and Grouping
27.1 Outlines and Grouping in XlsxWriter oo

28 Working with Memory and Performance
28.1 Performance Figures e

29 Working with VBA Macros

29.1 The Excel XLSMfileformat .
29.2 How VBA macros are included in XlsxWriter
29.3 Thevba_extractpy utility
29.4 Adding the VBA macros to a XlsxWriterfile
29.5 Settingthe VBA codenames i e
29.6 Whattodoifitdoesntwork

30 Working with Python Pandas and XisxWriter

30.1 Using XlsxWriter with Pandas
30.2 Accessing XIsxWriterfromPandas,
30.3 Adding Charts to Dataframe output
30.4 Adding Conditional Formatting to Dataframe output
30.5 Formatting of the Dataframe output
30.6 Formatting of the Dataframe headers
30.7 Adding a Dataframe to a WorksheetTable
30.8 Adding an autofilter to a Dataframe output oL
30.9 Handling multiple Pandas Dataframes
30.10Passing XlsxWriter constructor optionstoPandas
30.11Saving the Dataframe outputtoastring
30.12Additional Pandas and Excel Information

31

Examples

31.1 Example:
31.2 Example:
31.3 Example:
31.4 Example:
31.5 Example:
31.6 Example:
31.7 Example:
31.8 Example:
31.9 Example:
31.10Example:
31.11 Example:
31.12Example:
31.13Example:
31.14Example:
31.15Example:
31.16 Example:

HelloWorld e
Simple Feature Demonstration
Catch exceptiononclosing
Datesand TimesinExcel
Adding hyperlinks
Array formulas e
Dynamic array formulas o
Applying Autofilters
Data Validation and Drop Down Lists
Conditional Formatting.
Defined names/Namedranges
MergingCells
Writing “Rich” strings with multiple formats
Merging Cells witha Rich String
Inserting images intoaworksheet 0L,
Inserting images from a URL or byte stream into a worksheet

viii

31.17Example:
31.18 Example:
31.19Example:
31.20Example:
31.21 Example:
31.22Example:
31.23Example:
31.24Example:
31.25Example:
31.26 Example:
31.27 Example:
31.28 Example:
31.29 Example:
31.30Example:
31.31 Example:
31.32Example:
31.33Example:
31.34Example:
31.35Example:
31.36 Example:
31.37 Example:
31.38 Example:
31.39Example:
31.40Example:
31.41 Example:
31.42Example:
31.43Example:
31.44Example:
31.45Example:
31.46 Example:
31.47Example:

32 Chart Examples
Example:
Example:
Example:
Example:
Example:
Example:
Example:
Example:
Example:
32.10Example:
32.11 Example:
32.12Example:
32.13Example:
32.14Example:
32.15Example:

32.1
32.2
32.3
32.4
32.5
32.6
32.7
32.8
32.9

Left to Right worksheetsandtext 445
Simple Djangoclass 446
Simple HTTP Server e e e 447
Adding Headers and Footers to Worksheets 449
Freeze Panesand SplitPanes 452
Worksheet Tableso 455
Writing User Defined Types (1) 463
Writing User Defined Types (2) o o oo oo i oo 464
Writing User Definedtypes (3) o o o oo oo 466
Ignoring Worksheet errorsandwarnings 468
Sparklines (Simple) 470
Sparklines (Advanced) 471
Adding Cell Comments to Worksheets (Simple) 478
Adding Cell Comments to Worksheets (Advanced) 480
Insert Textboxes into a Worksheet 485
Outlineand Grouping i e e 490
Collapsed Outline and Grouping 495
Setting Document Properties o 499
Simple Unicode with Python3 501
Unicode - PolishinUTF-8 502
Unicode - ShiftJIS 503
Setting the Worksheet Background 505
Setting Worksheet TabColors 506
Diagonal bordersincells, 507
Enabling Cell protection in Worksheets 509
Hiding Worksheets 510
Hiding Rowsand Columns 512
Example of subclassing the Workbook and Worksheet classes 513
Advanced example of subclassing, . 515
Adding a VBA macrotoa Workbook oL 519
Excel 365 LAMBDA() function, 520

523
Chart (Simple) e 523
AreaChart e 524
BarChart 528
ColumnChart e e 531
Line Chart e 535
PieChart e 539
DoughnutChart e 542
ScatterChart 546
RadarChart e 552
Stock Chart 556
StylesChart e 557
Chartwith Pattern Fills 559
Chartwith GradientFills 561
Secondary AxisChart e 562
CombinedChart e 564

32.16 Example:
32.17Example:
32.18 Example:
32.19Example:
32.20 Example:
32.21 Example:
32.22Example:
32.23 Example:

33.1
33.2
33.3
33.4
33.5
33.6
33.7
33.8
33.9

34.2 Xlwings

Pareto Chart
Gauge Chart
Clustered Chart
Date Axis Chart
Charts with Data Tables
ChartswithDataTools i ..
Charts with Data Labels
Chartsheet

33 Pandas with XisxWriter Examples
Example:
Example:
Example:
Example:
Example:
Example:
Example:
Example:
Example:
33.10Example:
33.11 Example:
33.12Example:

Pandas Excelexample
Pandas Excel with multiple dataframes
Pandas Excel dataframe positioning
Pandas Excel output withachart
Pandas Excel output with conditional formatting
Pandas Excel output with an autofilter
Pandas Excel output with a worksheet table
Pandas Excel output with datetimes
Pandas Excel output with column formatting
Pandas Excel output with user defined header format
Pandas Excel output with alinechart
Pandas Excel output with a column chart

34 Alternative modules for handling Excel files
34.1 OpenPyXL

34.3 XLWT
34.4 XLRD

35 Libraries that use or enhance XisxWriter

35.1 Pandas
35.2 XlsxPandasFormatter

36 Known Issues and Bugs

36.1
36.2
36.3
36.4
36.5
36.6

“Content is Unreadable. Open and Repair”
“Exception caught in workbook destructor. Explicit close() may be required”
Formulas displayed as #NAME? until edited
Formula results displaying as zero in non-Excel applications
Images not displayed correctly in Excel 2001 for Mac and non-Excel applications . .
Charts series created from Worksheet Tables cannot have user defined names . . .

37 Reporting Bugs

37.1
37.2
37.3
37.4
37.5

Upgrade to the latest version of the module
Read the documentation
Look at the example programs
Use the official XlsxWriter Issue tracker on GitHub
Pointers for submitting a bug report

38 Frequently Asked Questions

38.1
38.2
38.3
38.4
38.5
38.6
38.7
38.8

PLOLOOPLOL

. Why do my formulas show a zero result in some, non-Excel applications? . . .
. Why do my formulas havea @ inthem?
. Can | apply a format to arange of cellsinonego?

39 Changes in XIlsxWriter

Release 3.0.2 - October 312021 i e
Release 3.0.1 - August 102021
Release 3.0.0 - August 102021 i
Release 2.0.0 - August 92021 e
Release 1.4.5-July292021 e
Release 1.4.4 - July 42021 e e
Release 1.4.3-May 122021 i e e e
Release 1.4.2-May 72021 e e
Release 1.4.1 -May 6 2021
39.10Release 1.4.0 - April 232021 e
39.11Release 1.3.9-April 152021
39.12Release 1.3.8-March 292021 e
39.13Release 1.3.7-October 132020 i i
39.14Release 1.3.6 - September232020 oo
39.15Release 1.3.5- September21 2020 e
39.16Release 1.3.4 - September 16 2020 i
39.17Release 1.3.3- August 132020 i e
39.18Release 1.3.2- August 62020 e
39.19Release 1.3.1 - August 32020 e e
39.20Release 1.3.0-July 302020
39.21Release 1.2.9-May 292020 e e
39.22Release 1.2.8 - February 222020
39.23Release 1.2.7 - December2320190
39.24Release 1.2.6 - November 152019 oo
39.25Release 1.2.5- November 102019
39.26Release 1.2.4 - November 92019 o oo
39.27Release 1.2.3-November 72019
39.28Release 1.2.2-0October 16 2019 o i it
39.29Release 1.2.1 - September 142019 e
39.30Release 1.2.0 - August 26 2019
39.31Release 1.1.9- August 192019
39.32Release 1.1.8-May 52019 e

39.1
39.2
39.3
39.4
39.5
39.6
39.7
39.8
39.9

39.33Release 1.
39.34Release 1.
39.35Release 1.
39.36Release 1.
39.37Release 1.
39.38Release 1.

-APril202019 . . . L L e
-April 72019 L L e
-February 222019
-February 102019
-February 92019
-October202018 e

— — —) ok
dDw s o N

. 629

630
630
630
630
630
631

633
633
633
633
633
634
634
634
634
634
634
634
635
635
635
635
636
636
636
636
636
636
637
637
637
637
637
638
638
638
638
638
638
639
639
639
639
639
639

Xi

39.39Release 1.1.1 -
39.40Release 1.1.0 -
39.41Release 1.0.9 -
39.42Release 1.0.8 -
39.43Release 1.0.7 -
39.44Release 1.0.6 -
39.45Release 1.0.5 -
39.46Release 1.0.4 -
39.47Release 1.0.3 -
39.48Release 1.0.2 -
39.49Release 1.0.1 -
39.50Release 1.0.0 -
39.51Release 0.9.9 -
39.52Release 0.9.8 -
39.53Release 0.9.7 -
39.54Release 0.9.6 -
39.55Release 0.9.5 -
39.56 Release 0.9.4 -
39.57Release 0.9.3 -
39.58Release 0.9.2 -
39.59Release 0.9.1 -
39.60Release 0.9.0 -
39.61Release 0.8.9 -
39.62Release 0.8.8 -
39.63Release 0.8.7 -
39.64 Release 0.8.6 -
39.65Release 0.8.5 -
39.66 Release 0.8.4 -
39.67 Release 0.8.3 -
39.68Release 0.8.2 -
39.69Release 0.8.1 -
39.70Release 0.8.0 -
39.71Release 0.7.9 -
39.72Release 0.7.8 -
39.73Release 0.7.7 -
39.74Release 0.7.6 -
39.75Release 0.7.5 -
39.76Release 0.7.4 -
39.77Release 0.7.3 -
39.78Release 0.7.2 -
39.79Release 0.7.1 -
39.80Release 0.7.0 -
39.81Release 0.6.9 -
39.82Release 0.6.8 -
39.83Release 0.6.7 -
39.84 Release 0.6.6 -
39.85Release 0.6.5 -
39.86Release 0.6.4 -

September222018 640

September22018 640
August 272018 e 640
August 272018 640
August 162018 641
August 152018 641
May 192018 e 641
April 142018 e 641
April 102018 e 641
October 142017 641
October 14 2017 e e 642
September 16 2017 642
September 52017 642
July 12017 . . o o e 642
June 252017 e e e 642
Dec262016 o e e 642
Dec242016 e e 642
Dec22016. e e 643
July 82016 643
June 132016 e 643
June 82016 643
June 72016 e 643
June 12016 643
May 312016 e e 643
May 132016 e e 644
April27 2016 o e e e e 644
April 172016 o e 644
January 162016 644
January 142016 e 644
January 132016 644
January 122016 e 644
January 102016 645
January 92016 645
January 62016 645
October192015. e 645
October 72015 645
October4 2015 e 645
September292015 645
May 72015 e e 646
March292015. 646
March232015. 646
March21 2015 646
March 192015 646
March 172015 e 646
March 12015 647
January 162015. 647
December312014 647
November 152014 647

Xii

39.87Release 0.6.3 -
39.88Release 0.6.2 -
39.89Release 0.6.1 -
39.90Release 0.6.0 -
39.91Release 0.5.9 -
39.92Release 0.5.8 -
39.93Release 0.5.7 -
39.94Release 0.5.6 -
39.95Release 0.5.5 -
39.96 Release 0.5.4 -
39.97Release 0.5.3 -
39.98Release 0.5.2 -
39.99Release 0.5.1 -
39.10@Release 0.5.0 -
39.10Release 0.4.9 -
39.10Release 0.4.8 -
39.10Release 0.4.7 -
39.104elease 0.4.6 -
39.10Release 0.4.5 -
39.10Release 0.4.4 -
39.10Release 0.4.3 -
39.108elease 0.4.2 -
39.10Release 0.4.1 -
39.11Release 0.4.0 -
39.11Release 0.3.9 -
39.11Release 0.3.8 -
39.11Release 0.3.7 -
39.114Release 0.3.6 -
39.11Release 0.3.5 -
39.11Release 0.3.4 -
39.11Release 0.3.3 -
39.118elease 0.3.2 -
39.11Release 0.3.1 -
39.12Release 0.3.0 -
39.12Release 0.2.9 -
39.12Release 0.2.8 -
39.12Release 0.2.7 -
39.124Release 0.2.6 -
39.12Release 0.2.5 -
39.12Release 0.2.4 -
39.12Release 0.2.3 -
39.128elease 0.2.2 -
39.12Release 0.2.1 -
39.13Release 0.2.0 -
39.13Release 0.1.9 -
39.13Release 0.1.8 -
39.13Release 0.1.7 -
39.134Release 0.1.6 -

November 62014 e 647
November 12014 i i i 647
October292014 e 648
October 152014 e 648
October 112014 e 648
September282014 648
August 132014 e 648
July 222014 e e 649
May 6 2014 e e 649
May 4 2014 e e 649
February 202014 649
December31 2013 649
December22013 e 650
November 172013 e 650
November 172013 i e 650
November 132013 e 650
November 92013 e 650
October23 2013 e 651
October21 2013 e 651
October 16 2013 e 651
September 122013 651
August 302013 651
August28 2013 651
August26 2013 651
August 24 2013 e e 652
August 232013 652
August 162013 e 652
July 262013 e 652
June 282013 e e 652
June 27 2013 e e e 652
June 102013 e e e 653
May 12013 e e 653
April 27 2013 e e e 653
April 72013 . . . e e 653
April 72013 . . . e 653
April 42013 e e 654
April32013 e 654
April 12013 e 654
April 12013 e 654
March31 2013 e 654
March 27 2013 e 655
March 27 2013 e 655
March252013 e 655
March24 2013 e 655
March 192013 e 655
March 18 2013 e 655
March 182013 e 656
March 172013 e 656

40

41

39.13Release 0.1.5-March 102013 656
39.13Release 0.1.4 -March 82013 e 656
39.13Release 0.1.3-March 72013 e 656
39.13Release 0.1.2-March 62013 i e 657
39.13Release 0.1.1 -March 32013 e 657
39.14Release 0.1.0 - February 282013 657
39.14Release 0.0.9 - February 27 2013 e e 657
39.14Release 0.0.8 - February 26 2013 658
39.14Release 0.0.7 - February 252013 658
39.148Release 0.0.6 - February 222013 658
39.14Release 0.0.5- February 212013 658
39.14Release 0.0.4 - February 202013 658
39.14Release 0.0.3 - February 192013 659
39.148elease 0.0.2 - February 182013 659
39.14Release 0.0.1 - February 172013 659
Author 661
40.1 Askingquestions. e 661
40.2 Sponsorshipand Donations 661
License 663

Xiv

Creating Excel files with Python and XlsxWriter, Release 3.0.2

XlsxWriter is a Python module for creating Excel XLSX files.

e 00 | demo.xlsx
Home | Layout | Tables | Charts | Smartart | »| v Lt~
Al | € & (= fx| Helo v
| . B s Dl P | —
Hello
2 |World |
3 123
4 123.456
5
6 python
i
‘ powered
9
10
11
12
12
e N .
¥ e

XlsxWriter is a Python module that can be used to write text, numbers, formulas and hyperlinks
to multiple worksheets in an Excel 2007+ XLSX file. It supports features such as formatting and

many more, including:

* 100% compatible Excel XLSX files.

Full formatting.

Merged cells.

Defined names.

Charts.

Autofilters.

Data validation and drop down lists.

Conditional formatting.
Worksheet PNG/JPEG/GIF/BMP/WMF/EMF images.

Rich multi-format strings.

» Cell comments.

CONTENTS 1

Creating Excel files with Python and XisxWriter, Release 3.0.2

+ Textboxes.
* Integration with Pandas.
* Memory optimization mode for writing large files.

It supports Python 3.4+ and PyPy3 and uses standard libraries only.

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

XlsxWriter is a Python module for writing files in the Excel 2007+ XLSX file format.

It can be used to write text, numbers, and formulas to multiple worksheets and it supports features
such as formatting, images, charts, page setup, autofilters, conditional formatting and many others.

XlsxWriter has some advantages and disadvantages over the alternative Python modules for writ-
ing Excel files.

» Advantages:
— It supports more Excel features than any of the alternative modules.

— It has a high degree of fidelity with files produced by Excel. In most cases the files
produced are 100% equivalent to files produced by Excel.

— It has extensive documentation, example files and tests.
— ltis fast and can be configured to use very little memory even for very large output files.
» Disadvantages:
— It cannot read or modify existing Excel XLSX files.
XIsxWriter is licensed under a BSD License and the source code is available on GitHub.

To try out the module see the next section on Getting Started with XisxWriter.

https://github.com/jmcnamara/XlsxWriter

Creating Excel files with Python and XisxWriter, Release 3.0.2

4 Chapter 1. Introduction

CHAPTER
TWO

GETTING STARTED WITH XLSXWRITER

Here are some easy instructions to get you up and running with the XisxWriter module.

2.1 Installing XilsxWriter

The first step is to install the XlsxWriter module. There are several ways to do this.

2.1.1 Using PIP

The pip installer is the preferred method for installing Python modules from PyPI, the Python
Package Index:

$ pip install XlsxWriter

Or to a non system dir:
$ pip install --user XlsxWriter

2.1.2 Installing from a tarball

If you download a tarball of the latest version of XlsxWriter you can install it as follows (change the
version number to suit):

$ tar -zxvf XlsxWriter-1.2.3.tar.gz

$ cd XlsxWriter-1.2.3
$ python setup.py install

A tarball of the latest code can be downloaded from GitHub as follows:
$ curl -0 -L http://github.com/jmcnamara/XlsxWriter/archive/main.tar.gz
$ tar zxvf main.tar.gz

$ cd XlsxWriter-main/
$ python setup.py install

https://pip.pypa.io/en/latest/
https://pypi.org/

Creating Excel files with Python and XisxWriter, Release 3.0.2

2.1.3 Cloning from GitHub

The XlsxWriter source code and bug tracker is in the XlsxWriter repository on GitHub. You can
clone the repository and install from it as follows:

$ git clone https://github.com/jmcnamara/XlsxWriter.git

$ cd XlsxWriter
$ python setup.py install

2.2 Running a sample program

If the installation went correctly you can create a small sample program like the following to verify
that the module works correctly:

import xlsxwriter

workbook = xlsxwriter.Workbook('hello.xlsx")
worksheet = workbook.add worksheet()

worksheet.write('Al', 'Hello world"')
workbook. close()

Save this to a file called hello. py and run it as follows:

$ python hello.py

This will output a file called hello.x1sx which should look something like the following:

6 Chapter 2. Getting Started with XisxWriter

https://github.com/jmcnamara/XlsxWriter

Creating Excel files with Python and XlsxWriter, Release 3.0.2

L SN 2 TR R .| |5 . S a—

Home | Layout | Tables | Charts | SmartArt | b5 I -

Al 1 @ © ([fx| Helloworld E

_| WP SRSV o N N N N =

Hello world

2
3
4
5
6
7
B
9
10
11
12
iz

FRFE— ihzﬂl_ Il
— i (+] | |

Mormal View Rieady w

If you downloaded a tarball or cloned the repo, as shown above, you should also have a directory
called examples with some sample applications that demonstrate different features of XlsxWriter.

2.3 Documentation

The latest version of this document is hosted on Read The Docs. It is also available as a PDF.

Once you are happy that the module is installed and operational you can have a look at the rest of
the XlsxWriter documentation. Tutorial 1: Create a simple XLSX file is a good place to start.

2.3. Documentation 7

https://github.com/jmcnamara/XlsxWriter/tree/main/examples
https://xlsxwriter.readthedocs.io
https://raw.githubusercontent.com/jmcnamara/XlsxWriter/main/docs/XlsxWriter.pdf

Creating Excel files with Python and XisxWriter, Release 3.0.2

8 Chapter 2. Getting Started with XisxWriter

CHAPTER
THREE

TUTORIAL 1: CREATE A SIMPLE XLSX FILE

Let’s start by creating a simple spreadsheet using Python and the XisxWriter module.

Say that we have some data on monthly outgoings that we want to convert into an Excel XLSX
file:

expenses = (
['Rent’, 1000],

['Gas', 100],
['Food', 3001,
['Gym', 507,

)

To do that we can start with a small program like the following:

import xlsxwriter

Create a workbook and add a worksheet.
workbook = xlsxwriter.Workbook('Expenses0l.xlsx")
worksheet = workbook.add worksheet()

Some data we want to write to the worksheet.
expenses = (
['Rent', 10001,

['Gas"', 1007,
['Food', 300],
['Gym", 507,

)

Start from the first cell. Rows and columns are zero indexed.
row 0
col 0

Iterate over the data and write it out row by row.
for item, cost in (expenses):

worksheet.write(row, col, item)
worksheet.write(row, col + 1, cost)
row += 1

Write a total using a formula.
worksheet.write(row, 0, 'Total')
worksheet.write(row, 1, '=SUM(B1:B4)"')

Creating Excel files with Python and XisxWriter, Release 3.0.2

workbook. close()

If we run this program we should get a spreadsheet that looks like this:

® 00 | tutorialD1.xlsx
Home | Layout | Tables | Charts | Smartart | M| v Lt~
BS + @ @ [fx| =SUM(B1:B4) -
PN 5 N N YU SO SN I ——
Rent 1000
Gas 100
Food 300
Gym 50
Total [1450]

mmﬂmn-ﬁwhn-n,

10
11
12

1

Mormal View Ready S

This is a simple example but the steps involved are representative of all programs that use XI-
sxWriter, so let’s break it down into separate parts.

The first step is to import the module:

import xlsxwriter
The next step is to create a new workbook object using the Workbook () constructor.
Workbook () takes one, non-optional, argument which is the filename that we want to create:

workbook = xlsxwriter.Workbook('Expenses0l.xlsx")

Note: XlsxWriter can only create new files. It cannot read or modify existing files.

The workbook object is then used to add a new worksheet via the add worksheet () method:

worksheet = workbook.add worksheet()

10 Chapter 3. Tutorial 1: Create a simple XLSX file

Creating Excel files with Python and XlsxWriter, Release 3.0.2

By default worksheet names in the spreadsheet will be Sheet?, Sheet2 etc., but we can also
specify a name:

worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet('Data')
worksheet3 = workbook.add worksheet()

We can then use the worksheet object to write data via the write () method:

worksheet.write(row, col, some data)

Note: (Throu)ghout XIsxWriter, rows and columns are zero indexed. The first cell in a worksheet,
Al,is (0, 0).

So in our example we iterate over our data and write it out as follows:

for item, cost in (expenses):

worksheet.write(row, col, item)
worksheet.write(row, col + 1, cost)
row += 1

We then add a formula to calculate the total of the items in the second column:

worksheet.write(row, 1, '=SUM(B1:B4)"')

Finally, we close the Excel file via the close () method:

workbook.close()

And that’s it. We now have a file that can be read by Excel and other spreadsheet applications.

In the next sections we will see how we can use the XlsxWriter module to add formatting and other
Excel features.

11

Creating Excel files with Python and XisxWriter, Release 3.0.2

12 Chapter 3. Tutorial 1: Create a simple XLSX file

CHAPTER
FOUR

TUTORIAL 2: ADDING FORMATTING TO THE XLSX FILE

In the previous section we created a simple spreadsheet using Python and the XisxWriter module.

This converted the required data into an Excel file but it looked a little bare. In order to make the
information clearer we would like to add some simple formatting, like this:

@00 | tutorial02.xlsx
Home | Layout | Tables | Charts | Smartrt | »| v Lt~
B6 1@ @ [fx| =SUM(B2:BS) |~

WU W VO N IR N——— -
1 |[item Cost

2 |Rent 51,000

3 |Gas 5100

4 |Food 5300

5 |Gym 550
2 Total

7

B

9

10

11

12

13
& 1 |

Mormal View Ready S

The differences here are that we have added Item and Cost column headers in a bold font, we
have formatted the currency in the second column and we have made the Total string bold.

To do this we can extend our program as follows:

13

Creating Excel files with Python and XisxWriter, Release 3.0.2

import xlsxwriter

Create a workbook and add a worksheet.
workbook = xlsxwriter.Workbook('Expenses02.xlsx")
worksheet = workbook.add worksheet()

Add a bold format to use to highlight cells.
bold = workbook.add format({'bold': True})

Add a number format for cells with money.
money = workbook.add format({'num format': '$#,##0'})

Write some data headers.
worksheet.write('Al', 'Item', bold)
worksheet.write('B1', 'Cost', bold)

Some data we want to write to the worksheet.
expenses = (
['Rent', 10001,

['Gas', 100],
['Food', 3007,
['Gym', 5017,

)

Start from the first cell below the headers.
row 1
col 0

Iterate over the data and write it out row by row.
for item, cost in (expenses):

worksheet.write(row, col, item)
worksheet.write(row, col + 1, cost, money)
row += 1

Write a total using a formula.
worksheet.write(row, 0, 'Total', bold)
worksheet.write(row, 1, '=SUM(B2:B5)', money)

workbook. close()

The main difference between this and the previous program is that we have added two Format
objects that we can use to format cells in the spreadsheet.

Format objects represent all of the formatting properties that can be applied to a cell in Excel such
as fonts, number formatting, colors and borders. This is explained in more detail in The Format
Class section.

For now we will avoid getting into the details and just use a limited amount of the format function-
ality to add some simple formatting:

Add a bold format to use to highlight cells.
bold = workbook.add format({'bold': True})

14 Chapter 4. Tutorial 2: Adding formatting to the XLSX File

Creating Excel files with Python and XlsxWriter, Release 3.0.2

money = workbook.add format({'num format': '$#,##0'})

We can then pass these formats as an optional third parameter to the worksheetwrite () method
to format the data in the cell:

write(row, column, token, [format])

Like this:

worksheet.write(row, 0, 'Total', bold)

Which leads us to another new feature in this program. To add the headers in the first row of the
worksheet we used write() like this:

worksheet.write('Al', 'Item', bold)
worksheet.write('B1', 'Cost', bold)

So, instead of (row, col) we used the Excel "Al’ style notation. See Working with Cell Nota-
tion for more details but don’t be too concerned about it for now. It is just a little syntactic sugar to
help with laying out worksheets.

In the next section we will look at handling more data types.

15

Creating Excel files with Python and XisxWriter, Release 3.0.2

16 Chapter 4. Tutorial 2: Adding formatting to the XLSX File

CHAPTER
FIVE

TUTORIAL 3: WRITING DIFFERENT TYPES OF DATA TO THE XLSX

FILE

In the previous section we created a simple spreadsheet with formatting using Python and the

XlsxWriter module.

This time let’s extend the data we want to write to include some dates:

expenses = (
['Rent', '2013-01-13', 1000],

['Gas', '2013-01-14', 100],
['Food', '2013-01-16', 300],
['Gym', '2013-01-20', 507,

)

The corresponding spreadsheet will look like this:

17

Creating Excel files with Python and XisxWriter, Release 3.0.2

NSNS E— O tutorial03.xdsx .
Home | Layout | Tables | Charts | SmartArt | b5 I -
L2 1| B @ (= fx| 13/01/2013 |
AWNNENN B W N YRR U —
1 |Item Date Cost
Rent | January132013| 51,000
3 |Gas January 14 2013 $100
4 |Food January 16 2013 5300
5 |Gym January 20 2013 550
6 |Total $1,450
i
8
9
10
11
12
13

FRFE— ihzﬂl_ Il
— i (+] | |

Mormal View Rieady w

The differences here are that we have added a Date column with formatting and made that column
a little wider to accommodate the dates.

To do this we can extend our program as follows:

from datetime import datetime
import xlsxwriter

Create a workbook and add a worksheet.
workbook = xlsxwriter.Workbook('Expenses03.xlsx")
worksheet = workbook.add worksheet()

Add a bold format to use to highlight cells.
bold = workbook.add format({'bold': 1})

Add a number format for cells with money.
money format = workbook.add format({'num format': 'S$#,##0'})

Add an Excel date format.
date format = workbook.add format({'num format': 'mmmm d yyyy'})

Adjust the column width.
worksheet.set column(1l, 1, 15)

Write some data headers.

18 Chapter 5. Tutorial 3: Writing different types of data to the XLSX File

Creating Excel files with Python and XlsxWriter, Release 3.0.2

worksheet.write('Al', 'Item', bold)
worksheet.write('B1', 'Date', bold)
worksheet.write('C1l', 'Cost', bold)

Some data we want to write to the worksheet.
expenses = (
['Rent', '2013-01-13', 100017,

['Gas', '2013-01-14', 100],
['Food', '2013-01-16', 300],
['Gym', '2013-01-20', 507,

)

Start from the first cell below the headers.
row 1
col 0

for item, date str, cost in (expenses):
Convert the date string into a datetime object.
date = datetime.strptime(date str, "SY-%m-%d")

worksheet.write string (row, col, item)
worksheet.write datetime(row, col + 1, date, date format)
worksheet.write number (row, col + 2, cost, money format)
row += 1

Write a total using a formula.
worksheet.write(row, 0, 'Total', bold)
worksheet.write(row, 2, '=SUM(C2:C5)', money format)

workbook. close()

The main difference between this and the previous program is that we have added a new Format
object for dates and we have additional handling for data types.

Excel treats different types of input data, such as strings and numbers, differently although it gen-
erally does it transparently to the user. XlsxWriter tries to emulate this in the worksheetwrite()
method by mapping Python data types to types that Excel supports.

The write () method acts as a general alias for several more specific methods:
* write string()
* write number()
» write blank()
« write formula()
* write datetime()
» write boolean()
e write url()

In this version of our program we have used some of these explicit write methods for different
types of data:

19

Creating Excel files with Python and XisxWriter, Release 3.0.2

worksheet.write string (row, col, item)
worksheet.write datetime(row, col + 1, date, date format)
worksheet.write number (row, col + 2, cost, money format)

This is mainly to show that if you need more control over the type of data you write to a worksheet
you can use the appropriate method. In this simplified example the write() method would
actually have worked just as well.

The handling of dates is also new to our program.

Dates and times in Excel are floating point numbers that have a number format applied to display
them in the correct format. If the date and time are Python datetime objects XlsxWriter makes
the required number conversion automatically. However, we also need to add the number format
to ensure that Excel displays it as as date:

from datetime import datetime
date format = workbook.add format({'num format': 'mmmm d yyyy'})

for item, date str, cost in (expenses):
date = datetime.strptime(date str, "%Y-%m-%d")

worksheet.write datetime(row, col + 1, date, date format)

Date handling is explained in more detail in Working with Dates and Time.

The last addition to our program is the set column() method to adjust the width of column ‘B’
so that the dates are more clearly visible:

worksheet.set column('B:B', 15)

That completes the tutorial section.

In the next sections we will look at the API in more detail starting with The Workbook Class.

20 Chapter 5. Tutorial 3: Writing different types of data to the XLSX File

https://docs.python.org/3/library/datetime.html#module-datetime

CHAPTER
SIX

THE WORKBOOK CLASS

The Workbook class is the main class exposed by the XlsxWriter module and it is the only class
that you will need to instantiate directly.

The Workbook class represents the entire spreadsheet as you see it in Excel and internally it
represents the Excel file as it is written on disk.

6.1 Constructor

Workbook (filename[, options])
Create a new XlsxWriter Workbook object.

Parameters
+ filename (siring) — The name of the new Excel file to create.
« options (dict) — Optional workbook parameters. See below.
Return type A Workbook object.

The Workbook () constructor is used to create a new Excel workbook with a given filename:

import xlsxwriter

workbook
worksheet

xlsxwriter.Workbook('filename.xlsx")
workbook.add worksheet()

worksheet.write(0, 0, 'Hello Excel')

workbook.close()

21

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.0.2

e 0o |] filename.xlsx
Home | Layout | Tahles | Charts | SmartArt | M v
Al AN <] fx| Hello Excel |»
& AT N N W — N ———,—" -
Hello Excel
2
3
4
3
6
7
8
9
10
11
12
14« =+ [sheet1 [+) II
EEJ Mormal View Ready
. A

The constructor options are:

+ constant_memory: Reduces the amount of data stored in memory so that large files can

be written efficiently:

workbook = xlsxwriter.Workbook(filename, {'constant memory': True})
Note, in this mode a row of data is written and then discarded when a cell in a new row
is added via one of the worksheet write () methods. Therefore, once this mode is ac-

tive, data should be written in sequential row order. For this reason the add table() and
merge range () Worksheet methods don’t work in this mode.

See Working with Memory and Performance for more details.

« tmpdir: XUsxWriter stores workbook data in temporary files prior to assembling the final
XLSX file. The temporary files are created in the system’s temp directory. If the default
temporary directory isn’t accessible to your application, or doesn’t contain enough space,
you can specify an alternative location using the tmpdir option:

workbook = xlsxwriter.Workbook(filename, {'tmpdir': '/home/user/tmp'})

The temporary directory must exist and will not be created.

« in_memory: To avoid the use of temporary files in the assembly of the final XLSX file, for
example on servers that don’t allow temp files, set the in_memory constructor option to

22

Chapter 6. The Workbook Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

True:

workbook = xlsxwriter.Workbook(filename, {'in memory': True})

This option overrides the constant memory option.

Note: This option used to be the recommended way of deploying XIlsxWriter on Google APP
Engine since it didn’t support a /tmp directory. However, the Python 3 Runtime Environment

in Google App Engine supports a filesystem with read/write access to /tmp which means this
option isn’t required.

strings_to_numbers: Enable the worksheetwrite () method to convert strings to num-
bers, where possible, using float () in order to avoid an Excel warning about “Numbers
Stored as Text”. The default is False. To enable this option use:

workbook = xlsxwriter.Workbook(filename, {'strings to numbers': True})

strings_to_formulas: Enable the worksheetwrite () method to convert strings to formu-
las. The default is True. To disable this option use:

workbook = xlsxwriter.Workbook(filename, {'strings to formulas': False})

strings_to_urls: Enable the worksheetwrite () method to convert strings to urls. The
default is True. To disable this option use:

workbook = xlsxwriter.Workbook(filename, {'strings to urls': False})

use_future_functions: Enable the use of newer Excel “future” functions without having to
prefix them with with x1fn.. The default is False. To enable this option use:

workbook = xlsxwriter.Workbook(filename, {'use future functions': True})

See also Formulas added in Excel 2010 and later.

max_url_length: Set the maximum length for hyperlinks in worksheets. The default is 2079
and the minimum is 255. Versions of Excel prior to Excel 2015 limited hyperlink links and
anchor/locations to 255 characters each. Versions after that support urls up to 2079 charac-
ters. XlsxWriter versions >= 1.2.3 support the new longer limit by default. However, a lower
or user defined limit can be set via the max_url_ length option:

workbook = xlsxwriter.Workbook(filename, {'max url length': 255})

nan_inf_to_errors: Enable the worksheetwrite() and write number() methods to
convert nan, inf and -inf to Excel errors. Excel doesn’t handle NAN/INF as numbers
s0 as a workaround they are mapped to formulas that yield the error codes #NUM! and
#DIV/0!. The default is False. To enable this option use:

workbook = xlsxwriter.Workbook(filename, {'nan inf to errors': True})

default_date_format: This option is used to specify a default date format string for use
with the worksheetwrite datetime() method when an explicit format isn’t given. See
Working with Dates and Time for more details:

6.1.

Constructor 23

https://cloud.google.com/appengine/docs/standard/python3/runtime#filesystem

Creating Excel files with Python and XisxWriter, Release 3.0.2

xlsxwriter.Workbook(filename, {'default date format': 'dd/mm/yy'})

* remove_timezone: Excel doesn’t support timezones in datetimes/times so there isn’'t any

fail-safe way that XlsxWriter can map a Python timezone aware datetime into an Excel date-
time in functions such as write datetime(). As such the user should convert and re-
move the timezones in some way that makes sense according to their requirements. Al-
ternatively the remove timezone option can be used to strip the timezone from datetime
values. The default is False. To enable this option use:

workbook = xlsxwriter.Workbook(filename, {'remove timezone': True})

See also Timezone Handling in XlsxWriter.

use_zip64: Use ZIP64 extensions when writing the xIsx file zip container to allow files
greater than 4 GB. This is the same as calling use zip64() after creating the Workbook
object. This constructor option is just syntactic sugar to make the use of the option more
explicit. The following are equivalent:

workbook = xlsxwriter.Workbook(filename, {'use zip64': True})

workbook = xlsxwriter.Workbook(filename)
workbook.use zip64()

See the note about the Excel warning caused by using this option in use zip64().

date_1904: Excel for Windows uses a default epoch of 1900 and Excel for Mac uses an
epoch of 1904. However, Excel on either platform will convert automatically between one
system and the other. XlsxWriter stores dates in the 1900 format by default. If you wish
to change this you can use the date 1904 workbook option. This option is mainly for
enhanced compatibility with Excel and in general isn’t required very often:

workbook = xlsxwriter.Workbook(filename, {'date 1904': True})

When specifying a filename it is recommended that you use an .x1sx extension or Excel will
generate a warning when opening the file.

The Workbook () method also works using the with context manager. In which case it doesn’t
need an explicit close() statement:

with xlsxwriter.Workbook('hello world.xlsx') as workbook:
worksheet = workbook.add worksheet()

worksheet.write('Al', 'Hello world')

It is possible to write files to in-memory strings using ByteslO as follows:

from io import BytesIO

output = BytesIO()
workbook = xlsxwriter.Workbook(output)
worksheet = workbook.add worksheet()

24

Chapter 6. The Workbook Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

worksheet.write('Al', 'Hello')
workbook. close()

xlsx data = output.getvalue()
To avoid the use of any temporary files and keep the entire file in-memory use the in_memory
constructor option shown above.

See also Example: Simple HTTP Server.

6.2 workbook.add worksheet()

add_worksheet ([name])
Add a new worksheet to a workbook.

Parameters name (siring) — Optional worksheet name, defaults to Sheet1, etc.
Return type A worksheet object.
Raises
* DuplicateWorksheetName — if a duplicate worksheet name is used.
* InvalidWorksheetName — if an invalid worksheet name is used.
* ReservedWorksheetName — if a reserved worksheet name is used.
The add_worksheet () method adds a new worksheet to a workbook.

At least one worksheet should be added to a new workbook. The Worksheet object is used to
write data and configure a worksheet in the workbook.

The name parameter is optional. If it is not specified, or blank, the default Excel convention will be
followed, i.e. Sheet1, Sheet2, etc.:

worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet('Foglio2")
worksheet3 = workbook.add worksheet('Data')
worksheet4 = workbook.add worksheet()

6.2. workbook.add_worksheet() 25

https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.0.2

e 00 | | worksheets.x|sx
Home | Layout | Tahles | Charts | SmartArt | M v
A3 = fx| |-
A AT N W, ————, — -—"—
1 |Mote the worksheet names
2
e 7] sheetl | Foglioz | Data /| Sheetd |+ 7 I
| Normal View | Ready i

i

The worksheet name must be a valid Excel worksheet name:

« It must be less than 32 characters. This error will raise a InvalidWorksheetName excep-
tion.

* It cannot contain any of the characters: [] : * ? / \. This error will raise a In-
validWorksheetName exception.

« It cannot begin or end with an apostrophe. This error will raise a InvalidWorksheetName
exception.

* You cannot use the same, case insensitive, name for more than one worksheet. This error
will raise a DuplicateWorksheetName exception.

* You should not use the Excel reserved name “History”, or case insensitive variants as this is
restricted in English, and other, versions of Excel.

The rules for worksheet names in Excel are explained in the Microsoft Office documentation on
how to Rename a worksheet.

6.3 workbook.add format()

add_format ([properties])
Create a new Format object to formats cells in worksheets.

Parameters properties (dictionary) — An optional dictionary of format properties.
Return type A format object.

The add format () method can be used to create new Format objects which are used to apply
formatting to a cell. You can either define the properties at creation time via a dictionary of property
values or later via method calls:

formatl
format2

workbook.add format(props) # Set properties at creation.
workbook.add format() # Set properties later.

26 Chapter 6. The Workbook Class

https://support.office.com/en-ie/article/rename-a-worksheet-3f1f7148-ee83-404d-8ef0-9ff99fbad1f9

Creating Excel files with Python and XlsxWriter, Release 3.0.2

See the The Format Class section for more details about Format properties and how to set them.

6.4 workbook.add chart()

add_chart (options)
Create a chart object that can be added to a worksheet.

Parameters options (dictionary) — An dictionary of chart type options.
Return type A Chart object.

This method is use to create a new chart object that can be inserted into a worksheet via the
insert chart() Worksheet method:

chart = workbook.add chart({'type': 'column'})

The properties that can be set are:
type (required)
subtype (optional)
* type
This is a required parameter. It defines the type of chart that will be created:

chart = workbook.add chart({'type': 'line'})

The available types are:

area
bar
column
doughnut
line

pie
radar
scatter
stock

* subtype
Used to define a chart subtype where available:

workbook.add chart({'type': 'bar', 'subtype': 'stacked'})

See the The Chart Class for a list of available chart subtypes.

Note: A chart can only be inserted into a worksheet once. If several similar charts are required
then each one must be created separately with add_chart().

See also Working with Charts and Chart Examples.

6.4. workbook.add_chart() 27

Creating Excel files with Python and XisxWriter, Release 3.0.2

6.5 workbook.add chartsheet()

add_chartsheet ([sheetname])
Add a new add_chartsheet to a workbook.

Parameters sheetname (siring) — Optional chartsheet name, defaults to Chart1,
etc.

Return type A chartsheet object.

The add_chartsheet () method adds a new chartsheet to a workbook.

.8 00 [% chartsheet.xlsx |
Home I Layout | Tables I Charts I SmartArt I | v Lt~
00 (= fx v

Results of sample analysis

-

dunple bagd [ra)

N warni

R l SheztlJ_ Chartlﬂ

| Hormal View

See The Chartsheet Class for details.

The sheetname parameter is optional. If it is not specified the default Excel convention will be
followed, i.e. Chart1, Chart2, etc.

The chartsheet name must be a valid Excel worksheet name. See add worksheet () for the
limitation on Excel worksheet names.

28 Chapter 6. The Workbook Class

https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XlsxWriter, Release 3.0.2

6.6 workbook.close()

close()
Close the Workbook object and write the XLSX file.

Raises

* FileCreateError — if there is a file or permissions error during writing.

DuplicateTableName — if a duplicate worksheet table name was added.

EmptyChartSeries — if a chart is added without a data series.
» UndefinedimageSize — if an image doesn’t contain height/width data.

* UnsupportedimageFormat — if an image type isn’t supported.

FileSizeError — if the filesize would require ZIP64 extensions.
The workbook close () method writes all data to the xIsx file and closes it:

workbook.close()

This is a required method call to close and write the xlIsxwriter file, unless you are using the with
context manager, see below.

The Workbook object also works using the with context manager. In which case it doesn’t need
an explicit close () statement:

With xlsxwriter.Workbook('hello world.xlsx') as workbook:
worksheet = workbook.add worksheet()

worksheet.write('Al', 'Hello world')

The workbook will close automatically when exiting the scope of the with statement.

The most common exception during close() is FileCreateError which is generally caused
by a write permission error. On Windows this usually occurs if the file being created is already
open in Excel. This exception can be caught in a try block where you can instruct the user to
close the open file before overwriting it:

while True:
try:
workbook.close()
except xlsxwriter.exceptions.FileCreateError as e:

decision = input("Exception caught in workbook.close(): \n"
"Please close the file if it is open in Excel.\n"
"Try to write file again? [Y/n]: " % e)
if decision !'= 'n':
continue
break

The close() method can only write a file once. It doesn’t behave like a save method and it
cannot be called multiple times to write a file at different stages. If it is called more than once it will

6.6. workbook.close() 29

Creating Excel files with Python and XisxWriter, Release 3.0.2

raise a UserWarning in order to help avoid issues where a file is closed within a loop or at the
wrong scope level.

See also Example: Catch exception on closing.

6.7 workbook.set_size()

set_size(width, height)
Set the size of a workbook window.

Parameters
+ width (inf) — Width of the window in pixels.
* height (/nt) — Height of the window in pixels.
The set _size() method can be used to set the size of a workbook window:

workbook.set size(1200, 800)

The Excel window size was used in Excel 2007 to define the width and height of a workbook
window within the Multiple Document Interface (MDI). In later versions of Excel for Windows this
interface was dropped. This method is currently only useful when setting the window size in Excel
for Mac 2011. The units are pixels and the default size is 1073 x 644.

Note, this doesn’t equate exactly to the Excel for Mac pixel size since it is based on the original
Excel 2007 for Windows sizing. Some trial and error may be required to get an exact size.

6.8 workbook.tab ratio()

set_tab_ratio(tab ratio)
Set the ratio between the worksheet tabs and the horizontal slider.

Parameters tab_ratio (float) — The tab ratio between 0 and 100.

The set tab ratio() method can be used to set the ratio between worksheet tabs and the
horizontal slider at the bottom of a workbook. This can be increased to give more room to the tabs
or reduced to increase the size of the horizontal slider:

30 Chapter 6. The Workbook Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Creating Excel files with Python and XlsxWriter, Release 3.0.2

[NON | ™ Workbook1

| # Home | Layout . Tables | Charts | SmartArt | 3N W e 2
A1 R x| =
NN & [< [Do [E [¥ _T =

12| Slider

15
44 FFk Sheatl | +
| Sheet1 | +] I

Mormal View Ready A

The default value in Excel is 60. It can be changed as follows:

workbook.set tab ratio(75)

6.9 workbook.set_properties()

set_properties (properties)
Set the document properties such as Title, Author etc.

Parameters properties (dict) — Dictionary of document properties.

The set properties() method can be used to set the document properties of the Excel file
created by XlsxWriter. These properties are visible when you use the Office Button ->
Prepare -> Properties option in Excel and are also available to external applications that
read or index windows files.

The properties that can be set are:
- title
« subject

« author

6.9. workbook.set_properties() 31

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.0.2

manager
company
category
keywords
comments
status
hyperlink base

create - the file creation date as a datetime. date object.

The properties are all optional and should be passed in dictionary format as follows:

workbook.set properties({

"title': 'This is an example spreadsheet’,
'subject': 'With document properties’,

"author': "John McNamara',

‘manager': 'Dr. Heinz Doofenshmirtz',

"company': 'of Wolves',

'category': 'Example spreadsheets',

'keywords': 'Sample, Example, Properties’,
'created': datetime.date(2018, 1, 1),

'comments': 'Created with Python and XlsxWriter'})

32

Chapter 6. The Workbook Class

https://docs.python.org/3/library/datetime.html#datetime.date

Creating Excel files with Python and XlsxWriter, Release 3.0.2

___doc_properties.xlsx Properties

—w Statistics Contents Custom]—

Title: Ill'his- is an example spreadsheet I
Subject: |W|th document properties |
Author: |jcrhr'| Mchamara |
Manager: |Dr. Heinz Doofenshmirtz |
Company: |nf Wolves |
Category: |Example spreadsheets |
Keywords: |S-am ple, Example, Properties |
Comments: Created with Python and XlsxWriter

Hyperlink base:

Template:

|| Save preview picture with this document

See also Example: Setting Document Properties.

6.10 workbook.set_custom_property()

set_custom_property (name, value|, property_type])
Set a custom document property.

Parameters
* name (siring) — The name of the custom property.

 value — The value of the custom property (various types).

6.10. workbook.set_custom_property() 33

https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.0.2

» property_type (string) — The type of the property. Optional.

The set _custom property() method can be used to set one or more custom document prop-
erties not covered by the standard properties in the set properties() method above.

For example:

date = datetime.strptime('2016-12-12",

workbook.set custom property('Checked by"',
workbook.set custom property('Date completed', date)
workbook.set custom property('Document number', 12345)

workbook.set custom property('Has review',
workbook.set custom property('Signed off"',

(

(

(
workbook.set custom property('Reference number', 1.2345)

(

(

"%Y -

%m-%d ')

"Eve')

True)
False)

custom_properties.xlsx Properties

General Summary Statistics

MName: Checked by Maodify
Client Delete
Date completed
Departrment
Destination
Disposition
Type: Text
Value: Eve Link to content
Properties: Mame Value Type A
Checked b Eve Text
Date completed 12/12/2016 Date
Document number 12345 Mumber
Reference number 1.2345 Mumber
Has review Yes Yes or no
Signed off Mo Yes or no

34

Chapter 6. The Workbook Class

https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XlsxWriter, Release 3.0.2

Date parameters should be datetime.datetime objects.

The optional property type parameter can be used to set an explicit type for the custom prop-
erty, just like in Excel. The available types are:

text
date
number
bool

However, in almost all cases the type will be inferred correctly from the Python type, like in the
example above.

Note: the name and value parameters are limited to 255 characters by Excel.

6.11 workbook.define_name()

define_name()
Create a defined name in the workbook to use as a variable.

Parameters
* name (siring) — The defined name.
« formula (siring) — The cell or range that the defined name refers to.

This method is used to defined a name that can be used to represent a value, a single cell or a
range of cells in a workbook. These are sometimes referred to as a “Named Range”.

Defined names are generally used to simplify or clarify formulas by using descriptive variable
names:

workbook.define name('Exchange rate', '=0.96")
worksheet.write('B3', '=B2*Exchange rate')

6.11. workbook.define_name() 35

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.0.2

@9 defined_name.xlsx
| A Home | Layout | Tables | Charts | SmartArt | »| v &
B3 | @ @ (- fx| =Exchange_rate |~
A A B | C | = |

1 |This worksheet contains some defined names.
2 |See Formulas -> Name Manager above,

ﬂExar‘nple farmula in cell B3 ->

44 * kl l Shutl" Shezt:Z_i_-l'-. [

Mormal View Ready i

As in Excel a name defined like this is “global” to the workbook and can be referred to from any
worksheet:

Global workbook name.
workbook.define name('Sales', '=Sheetl!G1:H10")

It is also possible to define a local/worksheet name by prefixing it with the sheet name using the
syntax 'sheetname!definedname’:

Local worksheet name.
workbook.define name('Sheet2!Sales', '=Sheet2!G1:G10")

If the sheet name contains spaces or special characters you must follow the Excel convention and
enclose it in single quotes:

workbook.define name("'New Data'!Sales", '=Sheet2!G1:G10")

The rules for names in Excel are explained in the Microsoft Office documentation on how to Define
and use names in formulas.

See also Example: Defined names/Named ranges.

36 Chapter 6. The Workbook Class

http://office.microsoft.com/en-001/excel-help/define-and-use-names-in-formulas-HA010147120.aspx
http://office.microsoft.com/en-001/excel-help/define-and-use-names-in-formulas-HA010147120.aspx

Creating Excel files with Python and XlsxWriter, Release 3.0.2

6.12 workbook.add_vba_project()

add_vba_project (vba_project[, is_stream])
Add a vbaProject binary to the Excel workbook.

Parameters
» vba_project — The vbaProject binary file name.
* is_stream (bool) — The vba_project is an in memory byte stream.

The add vba project() method can be used to add macros or functions to a workbook using
a binary VBA project file that has been extracted from an existing Excel xlsm file:

workbook.add vba project('./vbaProject.bin")

Only one vbaProject.bin file can be added per workbook.

The is_stream parameter is used to indicate that vba project refers to a ByteslO byte stream
rather than a physical file. This can be used when working with the workbook in memory mode.

See Working with VBA Macros for more details.

6.13 workbook.set vba name()

set_vba_name (name)
Set the VBA name for the workbook.

Parameters name (siring) — The VBA name for the workbook.

The set _vba name() method can be used to set the VBA codename for the workbook. This is
sometimes required when a vbaProject macro included via add _vba project() refers to the
workbook. The default Excel VBA name of ThisWorkbook is used if a user defined name isn’t
specified.

See Working with VBA Macros for more details.

6.14 workbook.worksheets()

worksheets ()
Return a list of the worksheet objects in the workbook.

Return type A list of worksheet objects.

The worksheets () method returns a list of the worksheets in a workbook. This is useful if you
want to repeat an operation on each worksheet in a workbook:

for worksheet in workbook.worksheets():
worksheet.write('Al', 'Hello')

6.12. workbook.add_vba_project() 37

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.0.2

6.15 workbook.get worksheet_by name()

get_worksheet_by_name (name)
Return a worksheet object in the workbook using the sheetname.

Parameters name (siring) — Name of worksheet that you wish to retrieve.
Return type A worksheet object.

The get worksheet by name() method returns the worksheet or chartsheet object with the
the given name or None if it isn’t found:

worksheet = workbook.get worksheet by name('Sheetl')

6.16 workbook.get default_url_format()

get_default_url_format()
Return a format object.

Return type A format object.

The get default url format() method gets a copy of the default url format used when a
user defined format isn’t specified with write url(). The format is the hyperlink style defined
by Excel for the default theme:

url format = workbook.get default url format()

6.17 workbook.set calc_mode()

set_calc_mode (mode)
Set the Excel calculation mode for the workbook.

Parameters mode (siring) — The calculation mode string

Set the calculation mode for formulas in the workbook. This is mainly of use for workbooks with
slow formulas where you want to allow the user to calculate them manually.

The mode parameter can be:

» auto: The default. Excel will re-calculate formulas when a formula or a value affecting the
formula changes.

« manual: Only re-calculate formulas when the user requires it. Generally by pressing F9.

« auto _except tables: Excel will automatically re-calculate formulas except for tables.

38 Chapter 6. The Workbook Class

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XlsxWriter, Release 3.0.2

6.18 workbook.use_zip64()

use_zip64()
Allow ZIP64 extensions when writing the xIsx file zip container.

Use ZIP64 extensions when writing the xIsx file zip container to allow files greater than 4 GB.

Note: When using the use zip64 () option the zip file created by the Python standard library
zipfile.py may cause Excel to issue a warning about repairing the file. This warning is annoy-

ing but harmless. The “repaired” file will contain all of the data written by XlsxWriter, only the zip
container will be changed.

6.19 workbook.read_only_recommended()

read_only_recommended /()
Add a recommendation to open the file in “read-only” mode.

This method can be used to set the Excel “Read-only Recommended” option that is available when
saving a file. This presents the user of the file with an option to open it in “read-only” mode. This
means that any changes to the file can’t be saved back to the same file and must be saved to a
new file. It can be set as follows:

import xlsxwriter

workbook = xUsxwriter.Workbook('file.xlsx")
worksheet = workbook.add worksheet()

workbook.read only recommended()
workbook. close()

Which will raise a dialog like the following when opening the file:

Alert
The author would like you to open file.xlsx' as read-
only unless you need to make changes. Open as read-

only?

No cancel | (IREENIN

6.18. workbook.use_zip64() 39

Creating Excel files with Python and XisxWriter, Release 3.0.2

40 Chapter 6. The Workbook Class

CHAPTER
SEVEN

THE WORKSHEET CLASS

The worksheet class represents an Excel worksheet. It handles operations such as writing data
to cells or formatting worksheet layout.

A worksheet object isn’t instantiated directly. Instead a new worksheet is created by calling the
add worksheet () method from a Workbook () object:

workbook = xlsxwriter.Workbook('filename.xlsx")
worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet()

worksheetl.write('Al', 123)

workbook.close()

800] filename.xlsx
Home | Layout | Tables | Charts | SmartArt | »| v LF-
ALl 1 00 (- A E
1 123
2 ——
— PR l Shutl_‘f Shutz_i_-b. II
— Mormal View Ready o

XlsxWriter supports Excels worksheet limits of 1,048,576 rows by 16,384 columns.

7.1 worksheet.write()

write (row, col, *args)
Write generic data to a worksheet cell.

41

Creating Excel files with Python and XisxWriter, Release 3.0.2

Parameters
* row — The cell row (zero indexed).
» col — The cell column (zero indexed).

» *args — The additional args that are passed to the sub methods such as
number, string and cell_format.

Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.
Returns Other values from the called write methods.

Excel makes a distinction between data types such as strings, numbers, blanks, formulas and
hyperlinks. To simplify the process of writing data to an XisxWriter file the write () method acts
as a general alias for several more specific methods:

* write string()
* write number()
 write blank()
* write formula()
 write datetime()
* write boolean()
s write url()
The rules for handling data in write() are as follows:

 Data types float, int, long, decimal.Decimal and fractions.Fraction are writ-
ten using write number().

» Data types datetime.datetime, datetime.date datetime.time or date-
time.timedelta are written using write datetime() .

» None and empty strings " " are written usingwrite blank().

 Data type bool is written usingwrite boolean().
Strings are then handled as follows:

« Strings that start with "=" are take to match a formula and are written using
write formula(). This can be overridden, see below.

« Strings that match supported URL types are written using write url(). This can be
overridden, see below.

» Whenthe Workbook () constructor strings to numbers optionis True strings that con-
vert to numbers using float () are written usingwrite number () in order to avoid Excel
warnings about “Numbers Stored as Text”. See the note below.

« Strings that don’t match any of the above criteria are written using write string().

42 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/fractions.html#fractions.Fraction
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

Creating Excel files with Python and XlsxWriter, Release 3.0.2

If none of the above types are matched the value is evaluated with float () to see if it corresponds
to a user defined float type. If it does then it is written using write number().

Finally, if none of these rules are matched then a TypeError exception is raised. However, it is
also possible to handle additional, user defined, data types using the add write handler()
method explained below and in Writing user defined types.

Here are some examples:

write blank()
write blank()

)

None)

worksheet.write
worksheet.write

worksheet.write(0, 0, 'Hello') # write string()
worksheet.write(1, 0, 'World') # write string()
worksheet.write(2, 0, 2) # write number()
worksheet.write(3, 0, 3.00001) # write number()
worksheet.write(4, 0, '=SIN(PI()/4)") # write formula()
(5, o, #
(6, 0, #

This creates a worksheet like the following:

® 00 | write.xlsx
Home | Layout | Tables | Charts | Smartart | » v fE
A5 L0 @ fx| =SIN(PID/4) v

T AW N U U U U SO N
1 |Hello

2 |world

3 2

4 3.00001

6

7

8

9

10

11

12

Mormal View Ready A

Note: The Workbook() constructor option takes three optional arguments that can be used
to override string handling in the write() function. These options are shown below with their

default values:

7.1. worksheet.write() 43

Creating Excel files with Python and XisxWriter, Release 3.0.2

xlsxwriter.Workbook(filename, {'strings to numbers': False,
'strings to formulas': True,
'strings to urls': True})

The write() method supports two forms of notation to designate the position of cells: Row-
column notation and A1 notation:

worksheet.write(0, 0, 'Hello')
worksheet.write('Al', 'Hello')

See Working with Cell Notation for more details.

The cell format parameter in the sub write methods is used to apply formatting to the cell.
This parameter is optional but when present it should be a valid Format object:

cell format = workbook.add format({'bold': True, ‘'italic': True})

worksheet.write(0, 0, 'Hello', cell format)

7.2 worksheet.add_ write_handler()

add_write_ handler (user_type, user_function)
Add a callback function to the write() method to handle user define types.

Parameters
* user_type (fype) — The user type() to match on.

» user_function (fypes.FunctionType) — The user defined function to write
the type data.

As explained above, the write() method maps basic Python types to corresponding Excel
types. If you want to write an unsupported type then you can either avoid write() and map
the user type in your code to one of the more specific write methods or you can extend it using the
add write handler() method.

For example, say you wanted to automatically write uuid values as strings using write() you
would start by creating a function that takes the uuid, converts it to a string and then writes it using
write string():

def write uuid(worksheet, row, col, uuid, format=None):
string uuid = str(uuid)
return worksheet.write string(row, col, string uuid, format)

You could then add a handler that matches the uuid type and calls your user defined function:

worksheet.add write handler(uuid.UUID, write uuid)

Then you can use write () without further modification:

44 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/types.html#types.FunctionType
https://docs.python.org/3/library/uuid.html#module-uuid

Creating Excel files with Python and XlsxWriter, Release 3.0.2

my uuid = uuid.uuid3(uuid.NAMESPACE DNS, 'python.org')

Write the UUID. This would raise a TypeError without the handler.
worksheet.write('Al', my uuid)

[NON | [user_types1.xlsx
| # Home | Layout | Tables | Charts | SmartArt |}}, v 3
AT AR <N fx| |+
] A L P e e —
1 |6fad59ea-ecBa-3cad-894e-db77e160355e
2
e < s o i sheeu JF i
L*] |
Mormal ¥iew Ready A

Multiple callback functions can be added using add write handler() but only one callback
action is allowed per type. However, it is valid to use the same callback function for different types:

worksheet.add write handler(int, test number range)
worksheet.add write handler(float, test number range)

See Writing user defined types for more details on how this feature works and how to write callback
functions, and also the following examples:

» Example: Writing User Defined Types (1)

» Example: Writing User Defined Types (2)

» Example: Writing User Defined types (3)

7.3 worksheet.write_string()

write_string(row, col, string[, cell format])
Write a string to a worksheet cell.

Parameters
* row (/int) — The cell row (zero indexed).
« col (int) — The cell column (zero indexed).
« string (siring) — String to write to cell.
« cell_format (Format) — Optional Format object.

Returns 0: Success.

7.3. worksheet.write_string() 45

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.0.2

Returns -1: Row or column is out of worksheet bounds.
Returns -2: String truncated to 32k characters.
The write string() method writes a string to the cell specified by row and column:

worksheet.write string(0, 0, 'Your text here')
worksheet.write string('A2', 'or here'")

Both row-column and A1 style notation are supported, as shown above. See Working with Cell
Notation for more details.

The cell format parameter is used to apply formatting to the cell. This parameter is optional
but when present is should be a valid Format object.

Unicode strings are supported in UTF-8 encoding. This generally requires that your source file is
UTF-8 encoded:

worksheet.write('Al', u'Some UTF-8 text')

e 00 | 7] utf8_01.xlsx
Home | Layout | Tahles | Charts | SmartArt | ¥ W fEv
Al17 ARX) Sfx| |-
A A RSV U U N » YR N—-—_—| =
1 | 3to ¢pasa Ha pycckom!
2
o R Sheetl | +]
[Normal 'l.l'iew—l _ Read:[‘ - ! ok

See Example: Simple Unicode with Python 3 for a more complete example.

Alternatively, you can read data from an encoded file, convert it to UTF-8 during reading and then
write the data to an Excel file. See Example: Unicode - Polish in UTF-8 and Example: Unicode -
Shift JIS.

The maximum string size supported by Excel is 32,767 characters. Strings longer than this will be
truncated by write string().

Note: Even though Excel allows strings of 32,767 characters it can only display 1000 in a cell.
However, all 32,767 characters are displayed in the formula bar.

46 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

7.4 worksheet.write_number()

write_number (row, col, number|, cell_format])
Write a number to a worksheet cell.

Parameters
* row (int) — The cell row (zero indexed).
+ col (int) — The cell column (zero indexed).
* humber (int or float) — Number to write to cell.
« cell_format (Format) — Optional Format object.

Returns 0: Success.

Returns -1: Row or column is out of worksheet bounds.

The write number () method writes numeric types to the cell specified by row and column:

worksheet.write number(0, 0, 123456)
worksheet.write number('A2', 2.3451)

Both row-column and A1 style notation are supported, as shown above. See Working with Cell
Notation for more details.

The numeric types supported are float, int, long, decimal.Decimal and frac-
tions.Fraction or anything that can be converted via float ().

When written to an Excel file numbers are converted to IEEE-754 64-bit double-precision floating
point. This means that, in most cases, the maximum number of digits that can be stored in Excel
without losing precision is 15.

Note: NAN and INF are not supported and will raise a TypeError exception.

The cell format parameter is used to apply formatting to the cell. This parameter is optional
but when present is should be a valid Format object.

7.5 worksheet.write_formula()

write_formula(row, col, formula[, cell_format|, value]])
Write a formula to a worksheet cell.

Parameters
* row (/int) — The cell row (zero indexed).
+ col (int) — The cell column (zero indexed).
« formula (string) — Formula to write to cell.

« cell_format (Format) — Optional Format object.

7.4. worksheet.write_number() 47

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/fractions.html#fractions.Fraction
https://docs.python.org/3/library/fractions.html#fractions.Fraction
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.0.2

+ value — Optional result. The value if the formula was calculated.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.

The write formula() method writes a formula or function to the cell specified by row and
column:

worksheet.write formula(0, 0, '=B3 + B4')

worksheet.write formula(l, 0, '=SIN(PI()/4)")
worksheet.write formula(2, 0, '=SUM(B1:B5)")
worksheet.write formula('A4', '=IF(A3>1,"Yes", "No")")
worksheet.write formula('A5', '=AVERAGE(1, 2, 3, 4)"')
worksheet.write formula('A6', '=DATEVALUE("1-Jan-2013")")

Both row-column and A1 style notation are supported, as shown above. See Working with Cell
Notation for more details.

Array formulas are also supported:

worksheet.write formula('A7', '{=SUM(A1:B1*A2:B2)}"')

See also the write array formula() method below.

The cell format parameter is used to apply formatting to the cell. This parameter is optional
but when present is should be a valid Format object.

If required, it is also possible to specify the calculated result of the formula using the optional
value parameter. This is occasionally necessary when working with non-Excel applications that
don’t calculate the result of the formula:

worksheet.write('Al', '=2+2', num format, 4)

See Formula Results for more details.

Excel stores formulas in US style formatting regardless of the Locale or Language of the Excel
version:

worksheet.write formula('Al', '=SUM(1, 2, 3)") # OK
worksheet.write formula('A2', '=SOMME(1, 2, 3)') # French. Error on load.

See Non US Excel functions and syntax for a full explanation.

Excel 2010 and 2013 added functions which weren’t defined in the original file specification.
These functions are referred to as future functions. Examples of these functions are ACOT,
CHISQ.DIST.RT, CONFIDENCE.NORM, STDEV.P, STDEV.S and WORKDAY . INTL. In XlsxWriter
these require a prefix:

worksheet.write formula('Al', '= x1fn.STDEV.S(B1:B10)")

See Formulas added in Excel 2010 and later for a detailed explanation and full list of functions
that are affected.

48 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

7.6 worksheet.write_array_formula()

write _array_ formula(first row, first col, last row, last col, formula[, cell format[,

value]])
Write an array formula to a worksheet cell.

Parameters
« first_row (int) — The first row of the range. (All zero indexed.)
« first_col (int) — The first column of the range.
+ last_row (int) — The last row of the range.
« last_col (int) — The last col of the range.

 formula (siring) — Array formula to write to cell.

cell_format (Format) — Optional Format object.

« value — Optional result. The value if the formula was calculated.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.

Thewrite array formula() method writes an array formula to a cell range. In Excel an array
formula is a formula that performs a calculation on a set of values. It can return a single value or
a range of values.

An array formula is indicated by a pair of braces around the formula: {=SUM(A1:B1*A2:B2)}.

For array formulas that return a range of values you must specify the range that the return values
will be written to:

worksheet.write array formula(0, 0, 2, 0, '{=TREND(C1:C3,B1:B3)}")
worksheet.write array formula('Al:A3"', "{=TREND(C1:C3,B1:B3)}")

Both row-column and A1 style notation are supported, as shown above. See Working with Cell
Notation for more details.

If the array formula returns a single value then the first and last parameters should be the
same:

worksheet.write array formula('Al:Al', '{=SUM(B1:C1*B2:C2)}")

It this case however it is easier to just use the write formula() orwrite() methods:

worksheet.write('Al', '{=SUM(B1:C1*B2:C2)}")
worksheet.write formula('Al', '{=SUM(B1:C1*B2:C2)}")

The cell format parameter is used to apply formatting to the cell. This parameter is optional
but when present is should be a valid Format object.

7.6. worksheet.write_array_formula() 49

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.0.2

If required, it is also possible to specify the calculated result of the formula (see discussion of
formulas and the value parameter for the write formula() method above). However, using
this parameter only writes a single value to the upper left cell in the result array. See Formula
Results for more details.

See also Example: Array formulas.

7.7 worksheet.write_dynamic_array_formula()

write_dynamic_array_formula(first row, first col, last row, last col, formula[,

cell_format], value]])
Write an array formula to a worksheet cell.

Parameters
« first_row (inf) — The first row of the range. (All zero indexed.)
« first_col (int) — The first column of the range.

* last_row (int) — The last row of the range.

last_col (inf) — The last col of the range.

« formula (siring) — Array formula to write to cell.

» cell_format (Format) — Optional Format object.

+ value — Optional result. The value if the formula was calculated.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.

The write dynamic array formula() method writes an dynamic array formula to a cell
range. Dynamic array formulas are explained in detail in Dynamic Array support.

The syntax of write dynamic_array formula() is the same as
write array formula(), shown above, except that you don’t need to add {} braces:

worksheet.write dynamic array formula('B1:B3', '=LEN(A1:A3)")

Which gives the following result:

50 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XlsxWriter, Release 3.0.2

B function_new

Home Insert Draw ¢ Tell me = Share [J1 Comments
B1 . fx =LEN(A1:A3) v
A B C D E F

1 |Foo ' 3]

2 Food ' 4
3 |Frood 5
4
5

Sheet1 +
Ready :-—_I- HH E - e — 125%

It is also possible to specify the first cell of the range to get the same results:

worksheet.write dynamic_array formula('B1:B1', '=LEN(A1:A3)")

See also Example: Dynamic array formulas.

7.8 worksheet.write_blank()

write_blank (row, col, blank|, cell_format])
Write a blank worksheet cell.

Parameters
* row (/int) — The cell row (zero indexed).
« col (int) — The cell column (zero indexed).
 blank — None or empty string. The value is ignored.
« cell_format (Format) — Optional Format object.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.
Write a blank cell specified by row and column:

worksheet.write blank(0, 0, None, cell format)
worksheet.write blank('A2', None, cell format)

7.8. worksheet.write_blank() 51

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.0.2

Both row-column and A1 style notation are supported, as shown above. See Working with Cell
Notation for more details.

This method is used to add formatting to a cell which doesn’t contain a string or number value.

Excel differentiates between an “Empty” cell and a “Blank” cell. An “Empty” cell is a cell which
doesn’t contain data or formatting whilst a “Blank” cell doesn’t contain data but does contain for-
matting. Excel stores “Blank” cells but ignores “Empty” cells.

As such, if you write an empty cell without formatting it is ignored:

worksheet.write('Al', None, cell format)
worksheet.write('A2', None)

This seemingly uninteresting fact means that you can write arrays of data without special treatment
for None or empty string values.

7.9 worksheet.write_boolean()

write_boolean (row, col, boolean|, cell_format])
Write a boolean value to a worksheet cell.

Parameters
* row (/int) — The cell row (zero indexed).
* col (int) — The cell column (zero indexed).
* boolean (boo/) — Boolean value to write to cell.
« cell_format (Format) — Optional Format object.

Returns 0: Success.

Returns -1: Row or column is out of worksheet bounds.

Thewrite boolean() method writes a boolean value to the cell specified by row and column:

worksheet.write boolean(0, 0, True)
worksheet.write boolean('A2', False)

Both row-column and A1 style notation are supported, as shown above. See Working with Cell
Notation for more details.

The cell format parameter is used to apply formatting to the cell. This parameter is optional
but when present is should be a valid Format object.

7.10 worksheet.write _datetime()

write_datetime (row, col, datetimel, cell_format])
Write a date or time to a worksheet cell.

52 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Creating Excel files with Python and XlsxWriter, Release 3.0.2

Parameters
* row (/nt) — The cell row (zero indexed).
« col (int) — The cell column (zero indexed).
+ datetime (datetime) — A datetime.datetime, .date, .time or .delta object.
+ cell_format (Format) — Optional Format object.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.

The write datetime() method can be used to write a date or time to the cell specified by row
and column:

worksheet.write datetime(0, 0, datetime, date format)
worksheet.write datetime('A2', datetime, date format)

Both row-column and A1 style notation are supported, as shown above. See Working with Cell
Notation for more details.

The datetime should be a datetime.datetime, datetime.date datetime.time or date-
time.timedelta object. The datetime class is part of the standard Python libraries.

There are many ways to create datetime objects, for example the date-
time.datetime.strptime() method:

date time = datetime.datetime.strptime('2013-01-23", '%Y-%m-%d')

See the datetime documentation for other date/time creation methods.

A date/time should have a cell format of type Format, otherwise it will appear as a number:

date format = workbook.add format({'num format': 'd mmmm yyyy'})

worksheet.write datetime('Al', date time, date format)
If required, a default date format string can be set using the Workbook() constructor de-
fault date format option.

See Working with Dates and Time for more details and also Timezone Handling in XlsxWriter.

7.11 worksheet.write_url()

write_url(row, col, url[, cell_format|, string|, tip]]])
Write a hyperlink to a worksheet cell.

Parameters
* row (/nt) — The cell row (zero indexed).

+ col (int) — The cell column (zero indexed).

7.11. worksheet.write_url() 53

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime
https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.0.2

* url (string) — Hyperlink url.

+ cell_format (Format) — Optional Format object. Defaults to the Excel hy-
perlink style.

« string (siring) — An optional display string for the hyperlink.
« tip (string) — An optional tooltip.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.
Returns -2: String longer than 32k characters.
Returns -3: Url longer than Excel limit of 2079 characters.
Returns -4: Exceeds Excel limit of 65,530 urls per worksheet.

The write url() method is used to write a hyperlink in a worksheet cell. The url is comprised
of two elements: the displayed string and the non-displayed link. The displayed string is the same
as the link unless an alternative string is specified:

worksheet.write url(0, 0, 'https://www.python.org/")
worksheet.write url('A2', 'https://www.python.org/")

Both row-column and A1 style notation are supported, as shown above. See Working with Cell
Notation for more details.

The cell format parameter is used to apply formatting to the cell. This parameter is optional
and the default Excel hyperlink style will be used if it isn’t specified. If required you can access the
default url format using the Workbook get default url format() method:

url format = workbook.get default url format()

Four web style URI’s are supported: http://, https://, ftp:// and mailto::

worksheet.write url('Al', 'ftp://www.python.org/")
worksheet.write url('A2', 'https://www.python.org/")
worksheet.write url('A3', 'mailto:jmcnamara@cpan.org')

All of the these URI types are recognized by the write () method, so the following are equivalent:

worksheet.write url('A2', 'https://www.python.org/")
worksheet.write ("A2', 'https://www.python.org/') # Same.

You can display an alternative string using the string parameter:

worksheet.write url('Al', 'https://www.python.org', string='Python home")

Note: If you wish to have some other cell data such as a number or a formula you can overwrite
the cell using another calltowrite *():

worksheet.write url('Al', 'https://www.python.org/")

Overwrite the URL string with a formula. The cell will still be a link.

54 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XlsxWriter, Release 3.0.2

Note the use of the default url format for consistency with other links.
url format = workbook.get default url format()
worksheet.write formula('Al', '=1+1', url format)

There are two local URIs supported: internal: and external:. These are used for hyperlinks
to internal worksheet references or external workbook and worksheet references:

Link to a cell on the current worksheet.
worksheet.write url('Al', ‘'internal:Sheet2!Al")

Link to a cell on another worksheet.
worksheet.write url('A2', ‘'internal:Sheet2!A1:B2")

Worksheet names with spaces should be single quoted like in Excel.
worksheet.write url('A3', "internal:'Sales Data'!Al")

Link to another Excel workbook.
worksheet.write url('A4', r'external:c:\temp\foo.xlsx")

Link to a worksheet cell in another workbook.
worksheet.write url('A5', r'external:c:\foo.xlsx#Sheet2!Al")

Link to a worksheet in another workbook with a relative link.
worksheet.write url('A7', r'external:..\foo.xlsx#Sheet2!Al")

Link to a worksheet in another workbook with a network link.
worksheet.write url('A8', r'external:\\NET\share\foo.xlsx")

Worksheet references are typically of the form Sheet1!Al. You can also link to a worksheet
range using the standard Excel notation: Sheet1!Al:B2.

In external links the workbook and worksheet name must be separated by the # character: ex-
ternal:Workbook.xlsx#Sheetl!Al’.

You can also link to a named range in the target worksheet. For example say you have a named
range called my name in the workbook c:\temp\foo.xlsx you could link to it as follows:

worksheet.write url('Al4', r'external:c:\temp\foo.xlsx#my name')
Excel requires that worksheet names containing spaces or non alphanumeric characters are single
quoted as follows 'Sales Data’!Al.

Links to network files are also supported. Network files normally begin with two back slashes as
follows \\NETWORK\ etc. In order to generate this in a single or double quoted string you will have
to escape the backslashes, ' \\\\NETWORK\\etc’ or use a raw string r'\\NETWORK\etc"'.

Alternatively, you can avoid most of these quoting problems by using forward slashes. These are
translated internally to backslashes:

worksheet.write url('Al4', "external:c:/temp/foo.xlsx")
worksheet.write url('Al15', ‘'external://NETWORK/share/foo.xlsx")

See also Example: Adding hyperlinks.

7.11. worksheet.write_url() 55

Creating Excel files with Python and XisxWriter, Release 3.0.2

Note: XlsxWriter will escape the following characters in URLs as required by Excel: \s " < > \
[1 ° 7 { }unlessthe URL already contains %xx style escapes. In which case it is assumed

that the URL was escaped correctly by the user and will by passed directly to Excel.

Note: Versions of Excel prior to Excel 2015 limited hyperlink links and anchor/locations to 255
characters each. Versions after that support urls up to 2079 characters. XlsxWriter versions >=

1.2.3 support this longer limit by default. However, a lower or user defined limit can be set via the
max_url_ length property in the Workbook () constructor.

7.12 worksheet.write_rich_string()

write_rich_string(row, col, *string parts|, cell_format])
Write a “rich” string with multiple formats to a worksheet cell.

Parameters

* row (/nt) — The cell row (zero indexed).

» col (int) — The cell column (zero indexed).

« string_parts (/ist) — String and format pairs.

« cell_format (Format) — Optional Format object.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.
Returns -2: String longer than 32k characters.
Returns -3: 2 consecutive formats used.
Returns -4: Empty string used.
Returns -5: Insufficient parameters.

Thewrite rich string() method is used to write strings with multiple formats. For example
to write the string “This is bold and this is italic” you would use the following:

bold
italic

workbook.add format({'bold': True})
workbook.add format({'italic': True})

worksheet.write rich string('Al"',
'This is ',
bold, 'bold',
' and this is ',
italic, 'italic')

56 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

Creating Excel files with Python and XlsxWriter, Release 3.0.2

e 00 ™| rich_strings.xlsx
Home | Layout | Tables | Charts | SmartArt | b5 I -
Al + £ @ [fx| Thisis bold and this is italic v
_I A B | Cl=
This is bold and this is italic
~ FEE Sh!!tl_ - Il
Mormal 'l."iewl Read'y' [|

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.write rich string(0, 0, 'This is ', bold, 'bold')
worksheet.write rich string('Al', 'This is ', bold, 'bold")

See Working with Cell Notation for more details.

The basic rule is to break the string into fragments and put a Format object before the fragment
that you want to format. For example:

Unformatted string.
'This is an example string'

Break it into fragments.
'This is an ', 'example', ' string'

Add formatting before the fragments you want formatted.
'This is an ', format, 'example', ' string'

In XlsxWriter.
worksheet.write rich string('Al"',

'This is an ', format, 'example', ' string')

String fragments that don’t have a format are given a default format. So for example when writing

the string “Some bold text” you would use the first example below but it would be equivalent to the
second:

Some bold format and a default format.
bold workbook.add format({'bold': True})
default = workbook.add format()

With default formatting:
worksheet.write rich string('Al"',

'Some ',
bold, 'bold',
' text')

7.12. worksheet.write_rich_string() 57

https://docs.python.org/3/library/functions.html#format

Creating Excel files with Python and XisxWriter, Release 3.0.2

0Or more explicitly:
worksheet.write rich string('Al"’,
default, 'Some ‘',
bold, "bold',
default, ' text')

If you have formats and segments in a list you can add them like this, using the standard Python
list unpacking syntax:

segments = ['This is ', bold, 'bold', ' and this is ', blue, 'blue']
worksheet.write rich string('A9', *segments)

In Excel only the font properties of the format such as font name, style, size, underline, color
and effects are applied to the string fragments in a rich string. Other features such as border,
background, text wrap and alignment must be applied to the cell.

The write rich string() method allows you to do this by using the last argument as a cell
format (if it is a format object). The following example centers a rich string in the cell:

bold
center

workbook.add format({'bold': True})
workbook.add format({'align': 'center'})

worksheet.write rich string('A5"',
‘Some ',
bold, 'bold text',
' centered',
center)

Note: Excel doesn’'t allow the use of two consecutive formats in a rich string or an
empty string fragment. For either of these conditions a warning is raised and the input to

write rich string() isignored.

Also, the maximum string size supported by Excel is 32,767 characters. If the rich string exceeds
this limit a warning is raised and the input to write rich string() isignored.

See also Example: Writing “Rich” strings with multiple formats and Example: Merging Cells with
a Rich String.

7.13 worksheet.write_row()

write_row(row, col, data[, cell_format])
Write a row of data starting from (row, col).

Parameters
» row (int) — The cell row (zero indexed).
+ col (int) — The cell column (zero indexed).

« data — Cell data to write. Variable types.

58 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.0.2

« cell_format (Format) — Optional Format object.
Returns 0: Success.
Returns Other: Error return value of the write () method.

Thewrite row() method can be used to write a list of data in one go. This is useful for convert-
ing the results of a database query into an Excel worksheet. The write() method is called for
each element of the data. For example:

data = ('Foo', 'Bar', 'Baz')
worksheet.write row('Al', data)

worksheet.write('Al', datal0])
worksheet.write('Bl', data[l])
worksheet.write('Cl', datal2])

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.write row(0, 0, data)
worksheet.write row('Al', data)

See Working with Cell Notation for more details.

7.14 worksheet.write_column()

write_column (row, col, data|, cell_format])
Write a column of data starting from (row, col).

Parameters

* row (/int) — The cell row (zero indexed).

+ col (int) — The cell column (zero indexed).

« data — Cell data to write. Variable types.

« cell_format (Format) — Optional Format object.
Returns 0: Success.
Returns Other: Error return value of the write() method.

The write column() method can be used to write a list of data in one go. This is useful for
converting the results of a database query into an Excel worksheet. The write() method is
called for each element of the data. For example:

data = ('Foo', 'Bar', 'Baz')

7.14. worksheet.write_column() 59

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.0.2

worksheet.write column('Al', data)

worksheet.write('Al', data[0])
worksheet.write('A2', data[l])
worksheet.write('A3', data[2])

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.write column(0, 0, data)
worksheet.write column('Al', data)

See Working with Cell Notation for more details.

7.15 worksheet.set_row()

set_row(row, height, cell_format, options)
Set properties for a row of cells.

Parameters

* row (int) — The worksheet row (zero indexed).

* height (float) — The row height, in character units.

« cell_format (Format) — Optional Format object.

» options (dict) — Optional row parameters: hidden, level, collapsed.
Returns 0: Success.
Returns -1: Row is out of worksheet bounds.

The set row() method is used to change the default properties of a row. The most common use
for this method is to change the height of a row:

worksheet.set row(0, 20)

The height is specified in character units. To specify the height in pixels use the
set row pixels() method.

The other common use for set row() is to set the Format for all cells in the row:

cell format = workbook.add format({'bold': True})

worksheet.set row(0, 20, cell format)

If you wish to set the format of a row without changing the default row height you can pass None
as the height parameter or use the default row height of 15:

worksheet.set row(1l, None, cell format)
worksheet.set row(1l, 15, cell format)

60 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.0.2

The cell format parameter will be applied to any cells in the row that don’t have a format. As
with Excel it is overridden by an explicit cell format. For example:

worksheet.set row(0, None, formatl) # Row 1 has formatl.

worksheet.write('Al', 'Hello') # Cell Al defaults to formatl.
worksheet.write('Bl', 'Hello', format2) # Cell Bl keeps format2.

The options parameter is a dictionary with the following possible keys:
« "hidden’
« "level’
« 'collapsed’

Options can be set as follows:

worksheet.set row(0, 20, cell format, {'hidden': True})

Or use defaults for other properties and set the options only.
worksheet.set row(0, None, None, {'hidden': True})

The "hidden’ option is used to hide a row. This can be used, for example, to hide intermediary
steps in a complicated calculation:

worksheet.set row(0, 20, cell format, {'hidden': True})
The 'level’ parameter is used to set the outline level of the row. Outlines are described in

Working with Outlines and Grouping. Adjacent rows with the same outline level are grouped
together into a single outline.

The following example sets an outline level of 1 for some rows:

worksheet.set row(0, None, None, {'level': 1})
worksheet.set row(1l, None, None, {'level': 1})
worksheet.set row(2, None, None, {'level': 1})

Excel allows up to 7 outline levels. The ' level’ parameter should be in the range 0 <= level
<= 7.

The "hidden’ parameter can also be used to hide collapsed outlined rows when used in con-
junction with the ’ level’ parameter:

worksheet.set row(1l, None, None, {'hidden': 1, 'level': 1})
worksheet.set row(2, None, None, {'hidden': 1, 'level': 1})

The 'collapsed’ parameter is used in collapsed outlines to indicate which row has the collapsed
"+ symbol:

worksheet.set row(3, None, None, {'collapsed': 1})

7.15. worksheet.set_row() 61

Creating Excel files with Python and XisxWriter, Release 3.0.2

7.16 worksheet.set_row_pixels()

set_row_pixels (row, height, cell_format, options)
Set properties for a row of cells, with the row height in pixels.

Parameters

 row (int) — The worksheet row (zero indexed).

* height (float) — The row height, in pixels.

» cell_format (Format) — Optional Format object.

+ options (dict) — Optional row parameters: hidden, level, collapsed.
Returns 0: Success.
Returns -1: Row is out of worksheet bounds.

The set row pixels() method is identical to set row() except that the height can be set in
pixels instead of Excel character units:

worksheet.set row pixels(0, 18)

All other parameters and options are the same as set row(). See the documentation on
set row() for more details.

7.17 worksheet.set_column()

set_column (first_col, last_col, width, cell_format, options)
Set properties for one or more columns of cells.

Parameters
« first_col (int) — First column (zero-indexed).
» last_col (int) — Last column (zero-indexed). Can be same as first_col.

« width (float) — The width of the column(s), in character units.

cell_format (Format) — Optional Format object.

» options (dict) — Optional parameters: hidden, level, collapsed.
Returns 0: Success.
Returns -1: Column is out of worksheet bounds.

The set column() method can be used to change the default properties of a single column or
a range of columns:

worksheet.set column(1l, 3, 30)

If set _column() is applied to a single column the value of first col and last col should
be the same:

62 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.0.2

worksheet.set column(1l, 1, 30) # Width of column B set to 30.

It is also possible, and generally clearer, to specify a column range using the form of A1 notation
used for columns. See Working with Cell Notation for more details.

Examples:

, 0, 20) # Column A width set to 20.
, 3, 30) # Columns B-D width set to 30.
E:E', 20) # Column E width set to 20.
F:H', 30) # Columns F-H width set to 30.

worksheet.set column(
worksheet.set column(
worksheet.set column(

(

0
1
worksheet.set column('

Ranges cannot overlap. Each unique contiguous range should be specified separately:

This won't work.
worksheet.set column('A:D', 50)
worksheet.set column('C:C', 10)

It needs to be split into non-overlapping regions.
worksheet.set column('A:B', 50)
worksheet.set column('C:C', 10)
worksheet.set column('D:E', 50)

The width parameter sets the column width in the same units used by Excel which is: the number
of characters in the default font. The default width is 8.43 in the default font of Calibri 11. The actual
relationship between a string width and a column width in Excel is complex. See the following
explanation of column widths from the Microsoft support documentation for more details. To set
the width in pixels use the set column pixels() method.

There is no way to specify “AutoFit” for a column in the Excel file format. This feature is only
available at runtime from within Excel. It is possible to simulate “AutoFit” in your application by
tracking the maximum width of the data in the column as your write it and then adjusting the
column width at the end.

As usual the cell format Format parameter is optional. If you wish to set the format without
changing the default column width you can pass None as the width parameter:

cell format = workbook.add format({'bold': True})

worksheet.set column(0, 0, None, cell format)

The cell format parameter will be applied to any cells in the column that don’t have a format.
For example:

worksheet.set column('A:A', None, formatl) # Col 1 has formatl.

worksheet.write('Al', 'Hello') # Cell Al defaults to formatl.
worksheet.write('A2', 'Hello', format2) # Cell A2 keeps format2.

A row format takes precedence over a default column format:

worksheet.set row(0, None, formatl) # Set format for row 1.
worksheet.set column('A:A', None, format2) # Set format for col 1.

7.17. worksheet.set_column() 63

https://support.microsoft.com/en-us/kb/214123
https://support.microsoft.com/en-us/kb/214123

Creating Excel files with Python and XisxWriter, Release 3.0.2

worksheet.write('Al', 'Hello') # Defaults to formatl
worksheet.write('A2', 'Hello') # Defaults to format2

The options parameter is a dictionary with the following possible keys:
« "hidden’
« "level’
« 'collapsed’

Options can be set as follows:

worksheet.set column('D:D', 20, cell format, {'hidden': 1})

Or use defaults for other properties and set the options only.
worksheet.set column('E:E', None, None, {'hidden': 1})

The "hidden’ option is used to hide a column. This can be used, for example, to hide interme-
diary steps in a complicated calculation:

worksheet.set column('D:D', 20, cell format, {'hidden': 1})
The "level’ parameter is used to set the outline level of the column. Outlines are described in

Working with Outlines and Grouping. Adjacent columns with the same outline level are grouped
together into a single outline.

The following example sets an outline level of 1 for columns B to G:

worksheet.set column('B:G', None, None, {'level': 1})

Excel allows up to 7 outline levels. The 'level’ parameter should be in the range 0 <= level
<= 7.

The "hidden’ parameter can also be used to hide collapsed outlined columns when used in
conjunction with the ' Llevel’ parameter:

worksheet.set column('B:G', None, None, {'hidden': 1, 'level': 1})

The 'collapsed’ parameter is used in collapsed outlines to indicate which column has the
collapsed '+’ symbol:

worksheet.set column('H:H', None, None, {'collapsed': 1})

7.18 worksheet.set_column_pixels()

set_column_pixels (first_col, last col, width, cell_format, options)
Set properties for one or more columns of cells, with the width in pixels.

Parameters

« first_col (int) — First column (zero-indexed).

64 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.0.2

last_col (int) — Last column (zero-indexed). Can be same as first_col.

width (float) — The width of the column(s), in pixels.

cell_format (Format) — Optional Format object.

options (dict) — Optional parameters: hidden, level, collapsed.
Returns 0: Success.
Returns -1: Column is out of worksheet bounds.

The set _column_pixels () method is identicalto set column() except that the width can be
set in pixels instead of Excel character units:

worksheet.set column pixels(5, 5, 75)

[Width: 10,00 75 pixels) |

E F G H |

All other parameters and options are the same as set column(). See the documentation on
set column() for more details.

7.19 worksheet.insert_image()

insert_image (row, col, filenamel, options])
Insert an image in a worksheet cell.

Parameters
» row (/nt) — The cell row (zero indexed).
+ col (int) — The cell column (zero indexed).
« filename — Image filename (with path if required).

« options (dict) — Optional parameters for image position, scale and url.

7.19. worksheet.insert_image() 65

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.0.2

Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.

This method can be used to insert a image into a worksheet. The image can be in PNG, JPEG,
GIF, BMP, WMF or EMF format (see the notes about BMP and EMF below):

worksheet.insert image('B2', 'python.png')

e 00 ") insert_image.xlsx

Home | Layout | Tahles | Charts | SmartArt | ¥ v B~
A22 110 & (- A |~

| A N O R N — E.. [" = [— -

1

2

3 thon

= PY

2

6 P

Fi

8

3 powered

Mormal View Ready

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.insert image(1l, 1, 'python.png')
worksheet.insert _image('B2', 'python.png')

See Working with Cell Notation for more details.
A file path can be specified with the image name:

worksheetl.insert image('B10', '../images/python.png")
worksheet2.insert _image('B20', r'c:\images\python.png")

The insert image() method takes optional parameters in a dictionary to position and scale the
image. The available parameters with their default values are:

66 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

{
‘X offset': 0,
'y offset': 0,
'Xx _scale': 1,
'y scale': 1,
'object position': 2,
‘image data': None,
"url': None,
'description’': None,
'decorative': False,
}

The offset values are in pixels:

worksheetl.insert image('B2', 'python.png', {'x offset': 15, 'y offset': 10})
The offsets can be greater than the width or height of the underlying cell. This can be occasionally
useful if you wish to align two or more images relative to the same cell.

The x_scale and y_scale parameters can be used to scale the image horizontally and verti-
cally:

worksheet.insert image('B3', 'python.png', {'x scale': 0.5, 'y scale': 0.5})

The url parameter can used to add a hyperlink/url to the image. The tip parameter gives an
optional mouseover tooltip for images with hyperlinks:

worksheet.insert image('B4', 'python.png', {'url': "https://python.org'})

See alsowrite url() for details on supported URlIs.
The image data parameter is used to add an in-memory byte stream in 10.BytesIO format:

worksheet.insert image('B5', 'python.png', {'image data': image data})

This is generally used for inserting images from URLs:

url = 'https://python.org/logo.png'
image data = io.BytesIO(urllib2.urlopen(url).read())

worksheet.insert image('B5', url, {'image data': image data})

When using the image data parameter a filename must still be passed to insert image()
since it is used by Excel as a default description field (see below). However, it can be a blank string
if the description isn’t required. In the previous example the filename/description is extracted from
the URL string. See also Example: Inserting images from a URL or byte stream into a worksheet.

The description field can be used to specify a description or “alt text” string for the image. In
general this would be used to provide a text description of the image to help accessibility. It is an
optional parameter and defaults to the filename of the image. It can be used as follows:

worksheet.insert image('B3', 'python.png',
{'description': 'The logo of the Python programming language.']

7.19. worksheet.insert_image() 67

https://docs.python.org/3/library/io.html#io.BytesIO

Creating Excel files with Python and XisxWriter, Release 3.0.2

Alt Text []

How would you describe this object and its
context to someone whao is blind?

(1-2 sentences recommended)

The logo of the Python programming language.

Mark as decorative

The optional decorative parameter is also used to help accessibility. It is used to mark the
image as decorative, and thus uninformative, for automated screen readers. As in Excel, if this
parameter is in use the description field isn’'t written. It is used as follows:

worksheet.insert image('B3', 'python.png', {'decorative': True})

The object position parameter can be used to control the object positioning of the image:

worksheet.insert image('B3', 'python.png', {'object position': 1})

Where object position has the following allowable values:
1. Move and size with cells.
2. Move but don’t size with cells (the default).
3. Don’t move or size with cells.
4

. Same as Option 1 to “move and size with cells” except XlsxWriter applies hidden cells after
the image is inserted.

See Working with Object Positioning for more detailed information about the positioning and scal-
ing of images within a worksheet.

Note:

* BMP images are only supported for backward compatibility. In general it is best to avoid
BMP images since they aren’t compressed. If used, BMP images must be 24 bit, true color,
bitmaps.

+ EMF images can have very small differences in width and height when compared to Excel
files. Despite a lot of effort and testing it wasn’t possible to exactly match Excel’s calculations
for handling the dimensions of EMF files. However, the differences are small (< 1%) and in
general aren’t visible.

68 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

See also Example: Inserting images into a worksheet.

7.20 worksheet.insert_chart()

insert_chart(row, col, chart|, options])
Write a string to a worksheet cell.

Parameters

* row (int) — The cell row (zero indexed).

+ col (int) = The cell column (zero indexed).

» chart — A chart object.

+ options (dict) — Optional parameters to position and scale the chart.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.

This method can be used to insert a chart into a worksheet. A chart object is created via the
Workbook add chart () method where the chart type is specified:

chart = workbook.add chart({type, 'column'})

It is then inserted into a worksheet as an embedded chart:

worksheet.insert chart('B5', chart)

16 7
14 7
12 7

10
W Seriesl

817 B Series2
. I Series3
1 2 3 4 5

Note: A chart can only be inserted into a worksheet once. If several similar charts are required
then each one must be created separately with add chart().

a3}

IS

8]

See The Chart Class, Working with Charts and Chart Examples.

7.20. worksheet.insert_chart() 69

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.0.2

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.insert chart(4, 1, chart)
worksheet.insert chart('B5', chart)

See Working with Cell Notation for more details.

The insert chart () method takes optional parameters in a dictionary to position and scale the
chart. The available parameters with their default values are:

{
'X offset':
'y offset':
‘X _scale':
'y scale':
'object position':
'description': None,
'decorative': False,

PR RO

}

The offset values are in pixels:

worksheet.insert chart('B5', chart, {'x offset': 25, 'y offset': 10})

The x_scaleandy scale parameters can be used to scale the chart horizontally and vertically:

worksheet.insert chart('B5', chart, {'x scale': 0.5, 'y scale': 0.5})

These properties can also be set via the Chart set size() method.

The description field can be used to specify a description or “alt text” string for the chart. In
general this would be used to provide a text description of the chart to help accessibility. It is an
optional parameter and has no default. It can be used as follows:

worksheet.insert chart('B5', chart,

{'description': 'Chart showing sales for the current year'})

70 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

Alt Text a

How would you describe this object and its context to
someone who Is blind?

{1-2 detailed sentences recommended)

Chart showing sales for the current year

Mark as decorative

The optional decorative parameter is also used to help accessibility. It is used to mark the chart
as decorative, and thus uninformative, for automated screen readers. As in Excel, if this parameter
is in use the description field isn’t written. It is used as follows:

worksheet.insert chart('B5', chart, {'decorative': True})

The object position parameter can be used to control the object positioning of the chart:

worksheet.insert chart('B5', chart, {'object position': 2})

Where object position has the following allowable values:
1. Move and size with cells (the default).
2. Move but don't size with cells.
3. Don’t move or size with cells.

See Working with Object Positioning for more detailed information about the positioning and scal-
ing of charts within a worksheet.

7.21 worksheet.insert_textbox()

insert_textbox (row, col, textbox[, options])
Write a string to a worksheet cell.

Parameters

7.21. worksheet.insert_textbox() 71

Creating Excel files with Python and XisxWriter, Release 3.0.2

* row (int) — The cell row (zero indexed).

+ col (int) — The cell column (zero indexed).

« text (siring) — The text in the textbox.

» options (dict) — Optional parameters to position and scale the textbox.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.

This method can be used to insert a textbox into a worksheet:

worksheet.insert textbox('B2', 'A simple textbox with some text")
@9 textbox.xlsx
| A Home | Layout | Tables | Charts | SmartArt | »| v &

B17 118 & (~ f| |~
CYONR W I TOUUN S -

A simple textbox with some text

LD (00|~ O | W | | | N |

Mormal View Ready i

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.insert textbox(1l, 1, 'Some text')
worksheet.insert textbox('B2', 'Some text')

See Working with Cell Notation for more details.

The size and formatting of the textbox can be controlled via the options dict:

72 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.0.2

width

height

x_scale

y scale
x_offset

y offset

object position

line

border

fill

gradient

font

align

text rotation

textlink
url
tip

description
decorative

These options are explained in more detail in the Working with Textboxes section.
See also Example: Insert Textboxes into a Worksheet.

See Working with Object Positioning for more detailed information about the positioning and scal-
ing of images within a worksheet.

7.22 worksheet.insert_button()

insert_button (row, col[, options])
Insert a VBA button control on a worksheet.

Parameters

* row (int) — The cell row (zero indexed).

+ col (int) — The cell column (zero indexed).

+ options (dict) — Optional parameters to position and scale the button.
Returns 0: Success
Returns -1: Row or column is out of worksheet bounds.

The insert button() method can be used to insert an Excel form button into a worksheet.

7.22. worksheet.insert_button() 73

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.0.2

This method is generally only useful when used in conjunction with the Workbook
add vba project() method to tie the button to a macro from an embedded VBA project:

Add the VBA project binary.
workbook.add vba project('./vbaProject.bin")

Add a button tied to a macro in the VBA project.

worksheet.insert button('B3', {'macro': 'say hello',
"caption': 'Press Me'})
®_® [macros.xlsm
[A Home | Layout | Tables | Charts | SmartArt |))|v L=
A19 1 0 & (~ K& |~
1
2
3 |Press the button to say hello. Press Me
4
5
6
7
8 L
9 .-
10
11 ~ Hello from Python!

See Working with VBA Macros and Example: Adding a VBA macro to a Workbook for more
details.

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.insert button(2, 1, {'macro': 'say hello',
‘caption': 'Press Me'})
worksheet.insert button('B3', {'macro': 'say hello',
'caption': 'Press Me'})

See Working with Cell Notation for more details.

The insert button() method takes optional parameters in a dictionary to position and scale

74 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

the chart. The available parameters with their default values are:

{
‘macro': None,
'caption': 'Button 1°',
'width': 64,
"height': 20.
"X offset': 0,
'y offset': 0,
‘X scale': 1,
'y scale': 1,
'description': None,
}

The macro option is used to set the macro that the button will invoke when the user clicks on it.
The macro should be included using the Workbook add vba project() method shown above.

The caption is used to set the caption on the button. The default is Button n where n is the
button number.

The default button width is 64 pixels which is the width of a default cell and the default button
height is 20 pixels which is the height of a default cell.

The offset, scale and description options are the same as for insert chart(), see above.

7.23 worksheet.data validation()

data_validation (first_row, first _col, last _row, last col, options)
Write a conditional format to range of cells.

Parameters
« first_row (inf) — The first row of the range. (All zero indexed.)
« first_col (/nt) — The first column of the range.
* last_row (int) — The last row of the range.
* last_col (inf) — The last col of the range.
 options (dict) — Data validation options.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.
Returns -2: Incorrect parameter or option.

The data validation() method is used to construct an Excel data validation or to limit the
user input to a dropdown list of values:

worksheet.data validation('B3', {'validate': 'integer',
'criteria': 'between',
'minimum': 1,
"'maximum': 10})

7.23. worksheet.data_validation() 75

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.0.2

worksheet.data validation('B13', {'validate': 'list',

'source': ['open', 'high', ‘'close'l})
@00 data_validate.xlsx
Home | Layout | Tables | Charts Smartart ¥ v I
B3 N <) (= fx| 7 -
A A 2 =
Some examples of data validation in XlsxWriter Bterunlwes In
1 this column
2
ﬁEnter an integer between 1 and 10 7

Enter an integer that is not between 1 and 10 (using cell references)

4
5

6

7 |Enter an integer greater than 0
B

9

Enter an integer less than 10

11 |Enter a decimal between 0.1 and 0.5

o | sveees [+ I

Mormal View Enter A

The data validation can be applied to a single cell or a range of cells. As usual you can use A1 or
Row/Column notation, see Working with Cell Notation:

worksheet.data validation(1l, 1, {'validate': 'list"',
'source': ['open', 'high', ‘'close'l})

worksheet.data validation('B2', {'validate': 'list"',
'source': ['open', 'high', 'close']})

With Row/Column notation you must specify all four cells in the range: (first row,
first col, last row, last col). If you need to refer to a single cell set the /ast_ val-
ues equal to the first_ values. With A1 notation you can refer to a single cell or a range of cells:

worksheet.data validation(0, 0, 4, 1, {...}
worksheet.data validation('Bl"', {

)
)
worksheet.data validation('C1:E5"', {)

-
-

The options parameter in data validation() must be a dictionary containing the parameters
that describe the type and style of the data validation. There are a lot of available options which

76 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

are described in detail in a separate section: Working with Data Validation. See also Example:
Data Validation and Drop Down Lists.

7.24 worksheet.conditional format()

conditional_format (first_row, first _col, last _row, last col, options)
Write a conditional format to range of cells.

Parameters
« first_row (/nt) — The first row of the range. (All zero indexed.)
« first_col (int) — The first column of the range.
* last_row (int) — The last row of the range.
» last_col (int) — The last col of the range.
+ options (dict) — Conditional formatting options.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.
Returns -2: Incorrect parameter or option.

The conditional format() method is used to add formatting to a cell or range of cells based
on user defined criteria:

worksheet.conditional format('B3:K12', {'type': ‘cell',
'criteria': '>="',
‘value': 50,
"format': formatl})

7.24. worksheet.conditional_format() 77

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.0.2

800 | conditional_format.xlsx
Home | Layout | Tahles | Charts | SmartArt | M v
A20 10O ([~ fx A
4 A [N IO N W —U————, _— -
1 |Cells with values >= 50 are in light red. Values < 50 are in light green.
2
3 34 12 38 30 75
4 6 24 1 84 54
3 28 79 a7 13 85
b 27 71 40 17 18
i B8 25 33 23 67
B 24 100 20 88 29
9 6 57 88 28 10
52 78 1 96 26
60 54 81 b6 81
70 E 46 14 71
'« < »»i [sheet1 | Sheet2 | Shee3 | sheerd | € ||
Mormal View Rieady w

The conditional format can be applied to a single cell or a range of cells. As usual you can use A1
or Row/Column notation, see Working with Cell Notation:

worksheet.conditional format(0, 0, 2, 1, {'type': 'cell',
'criteria': '>=',
'value': 50,
"format': formatl})
This is equivalent to the following:
worksheet.conditional format('Al:B3', {'type': ‘cell',
'criteria': '>="',
'value': 50,
'format': formatl})

With Row/Column notation you must specify all four cells in the range: (first row,
first col, last row, last col). If you need to refer to a single cell set the /ast_val-
ues equal to the first_ values. With A1 notation you can refer to a single cell or a range of cells:

worksheet.conditional format(o0, 0, 4, 1, {...})
worksheet.conditional format('Bl"', {...})
worksheet.conditional format('Cl:E5"', {...})

The options parameter in conditional format () must be a dictionary containing the param-
eters that describe the type and style of the conditional format. There are a lot of available options

78 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

which are described in detail in a separate section: Working with Conditional Formatting. See also
Example: Conditional Formatting.

7.25 worksheet.add table()

add_table (first_row, first_col, last_row, last _col, options)
Add an Excel table to a worksheet.

Parameters
« first_row (int) — The first row of the range. (All zero indexed.)
« first_col (int) — The first column of the range.
* last_row (int) — The last row of the range.
« last_col (int) — The last col of the range.
+ options (dict) — Table formatting options. (Optional)

Returns 0: Success.

Returns -1: Row or column is out of worksheet bounds.

Returns -2: Incorrect parameter or option.

The add_table() method is used to group a range of cells into an Excel Table:

worksheet.add table('B3:F7', { ... })

This method contains a lot of parameters and is described in Working with Worksheet Tables.
Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.add table(2, 1, 6, 5, { ... })
worksheet.add table('B3:F7', { ... })

See Working with Cell Notation for more details.

See also the examples in Example: Worksheet Tables.

Note: Tables aren’t available in XIsxWriter when Workbook () 'constant _memory’ mode is
enabled.

7.26 worksheet.add_sparkline()

add_sparkline (row, col, options)

Add sparklines to a worksheet.

Parameters

7.25. worksheet.add table() 79

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.0.2

* row (int) — The cell row (zero indexed).

+ col (int) — The cell column (zero indexed).

+ options (dict) — Sparkline formatting options.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.

Returns -2: Incorrect parameter or option.

Sparklines are small charts that fit in a single cell and are used to show trends in data.

@00 sparklines1.xlsx
Home | Layout | Tables | Charts | Smartart | M| v Lt~
A23 110 @& (~ & |~
v VNS & | c | D | E | F | =
1 -2 2 3 -1 0 — "
2 30 20 33 20 15 m
3 1 -1 -1 1 Al "= -
4
5
6
7/
8
9
FEE l ih!!tl_l |||
Mormal View Ready 4

The add sparkline() worksheet method is used to add sparklines to a cell or a range of cells:

worksheet.add sparkline('Fl1', {'range': 'Al:E1'})

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.add sparkline(0, 5, {'range': 'Al:E1'})
worksheet.add sparkline('F1', {'range': 'Al:E1'})

See Working with Cell Notation for more details.

This method contains a lot of parameters and is described in detail in Working with Sparklines.

80 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.0.2

See also Example: Sparklines (Simple) and Example: Sparklines (Advanced).

Note: Sparklines are a feature of Excel 2010+ only. You can write them to an XLSX file that can
be read by Excel 2007 but they won'’t be displayed.

7.27 worksheet.write_comment()

write_comment (row, col, comment|, options])
Write a comment to a worksheet cell.

Parameters

* row (/nt) — The cell row (zero indexed).

» col (int) — The cell column (zero indexed).

» comment (siring) — String to write to cell.

+ options (dict) — Comment formatting options.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.
Returns -2: String longer than 32k characters.

The write comment() method is used to add a comment to a cell. A comment is indicated in
Excel by a small red triangle in the upper right-hand corner of the cell. Moving the cursor over the
red triangle will reveal the comment.

The following example shows how to add a comment to a cell:

worksheet.write('Al', 'Hello')
worksheet.write comment('Al', 'This is a comment')

7.27. worksheet.write_comment() 81

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.0.2

e 00 | comments1.xlsx
Home | Layout | Tables | Charts | SmartArt | b5 I -
Al 10 @ (= fix| Hello |-

N S ——
1 _ This is & comment

2

3

4

3

6

i

B

9

10

11

12

Mormal View Cell Al commented by w

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.write comment(0, 0, 'This is a comment"')
worksheet.write comment('Al', 'This is a comment')

See Working with Cell Notation for more details.

The properties of the cell comment can be modified by passing an optional dictionary of key/value
pairs to control the format of the comment. For example:

worksheet.write comment('C3', 'Hello', {'x scale': 1.2, 'y scale': 0.8})

Most of these options are quite specific and in general the default comment behavior will be all
that you need. However, should you need greater control over the format of the cell comment the

following options are available:

author
visible

X _scale
width

y scale
height
color
font _name
font _size

82 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

start_cell
start row
start_col
x_offset
y offset

For more details see Working with Cell Comments and Example: Adding Cell Comments to Work-
sheets (Advanced) .

7.28 worksheet.show _comments()

show_comments ()
Make any comments in the worksheet visible.

This method is used to make all cell comments visible when a worksheet is opened:

worksheet.show comments()

Individual comments can be made visible using the visible parameter of the write comment
method (see above):

worksheet.write comment('C3', 'Hello', {'visible': True})

If all of the cell comments have been made visible you can hide individual comments as follows:

worksheet.show comments()
worksheet.write comment('C3', 'Hello', {'visible': False})

For more details see Working with Cell Comments and Example: Adding Cell Comments to Work-
sheets (Advanced) .

7.29 worksheet.set_comments_author()

set_comments_author (author)
Set the default author of the cell comments.

Parameters author (siring) — Comment author.
This method is used to set the default author of all cell comments:
worksheet.set comments author('John Smith')
Individual comment authors can be set using the author parameter of the write comment
method (see above).
If no author is specified the default comment author name is an empty string.

For more details see Working with Cell Comments and Example: Adding Cell Comments to Work-
sheets (Advanced) .

7.28. worksheet.show_comments() 83

https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.0.2

7.30 worksheet.get_name()

get_name()
Retrieve the worksheet name.

The get name() method is used to retrieve the name of a worksheet. This is something useful
for debugging or logging:

for worksheet in workbook.worksheets():
print worksheet.get name()

There is no set _name() method. The only safe way to set the worksheet name is via the
add worksheet () method.

7.31 worksheet.activate()

activate()
Make a worksheet the active, i.e., visible worksheet.

The activate() method is used to specify which worksheet is initially visible in a multi-sheet
workbook:

worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet()
worksheet3 = workbook.add worksheet()

worksheet3.activate()

8 00 [activate.xlsx
Home | Layout | Tables | Charts | SmartArt | ¥ W fFv
AS 0 & (= fx |~
fo.] B | € [b | E | F |I=
1
2
— FEICEE | Shutl_‘[snsz Sheet3 f+ J| II
— Mormal View Ready o

More than one worksheet can be selected via the select () method, see below, however only
one worksheet can be active.

The default active worksheet is the first worksheet.

84 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

7.32 worksheet.select()

select()
Set a worksheet tab as selected.

The select () method is used to indicate that a worksheet is selected in a multi-sheet workbook:

worksheetl.activate()
worksheet2.select()
worksheet3.select()

A selected worksheet has its tab highlighted. Selecting worksheets is a way of grouping them
together so that, for example, several worksheets could be printed in one go. A worksheet that
has been activated via the activate () method will also appear as selected.

7.33 worksheet.hide()

hide()
Hide the current worksheet.

The hide () method is used to hide a worksheet:

worksheet2.hide()

You may wish to hide a worksheet in order to avoid confusing a user with intermediate data or
calculations.

7.32. worksheet.select() 85

Creating Excel files with Python and XisxWriter, Release 3.0.2

8 00 | hide_sheet.xlsx
Home | Layout | Tables | Charts | SmartArt | M| v ft-
A28 1D @ (= x| A

Sheet2 is hidden

WO (00|~ O | W | | | N

FEE-— l Sh!!tl_‘[Sh&!ﬁu'. |||

Mormal View Rieady e

A hidden worksheet can not be activated or selected so this method is mutually exclusive with the
activate() and select() methods. In addition, since the first worksheet will default to being
the active worksheet, you cannot hide the first worksheet without activating another sheet:

worksheet2.activate()
worksheetl.hide()

See Example: Hiding Worksheets for more details.

7.34 worksheet.set first_sheet()

set_first_sheet()
Set current worksheet as the first visible sheet tab.

The activate() method determines which worksheet is initially selected. However, if there are
a large number of worksheets the selected worksheet may not appear on the screen. To avoid this
you can select which is the leftmost visible worksheet tab using set first sheet():

for in range(1l, 21):
workbook.add worksheet

86 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

worksheet19.set first sheet() # First visible worksheet tab.
worksheet20.activate() # First visible worksheet.

This method is not required very often. The default value is the first worksheet.

7.35 worksheet.merge_range()

merge_range (first_row, first_col, last_row, last col, data[, cell format])
Merge a range of cells.

Parameters
« first_row (int) — The first row of the range. (All zero indexed.)
« first_col (/nt) — The first column of the range.
* last_row (int) — The last row of the range.
« last_col (int) — The last col of the range.
« data — Cell data to write. Variable types.
« cell_format (Format) — Optional Format object.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.

Returns Other: Error return value of the called write() method.

The merge range() method allows cells to be merged together so that they act as a single area.

Excel generally merges and centers cells at same time. To get similar behavior with XlsxWriter

you need to apply a Format:

merge format = workbook.add format({'align': 'center'})

worksheet.merge range('B3:D4', 'Merged Cells', merge format)

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.merge range(2, 1, 3, 3, 'Merged Cells', merge format)
worksheet.merge range('B3:D4°', 'Merged Cells', merge format)

See Working with Cell Notation for more details.
It is possible to apply other formatting to the merged cells as well:

merge_format = workbook.add format({

"bold': True,
'border': 6,
‘align': 'center’,
‘valign': 'vcenter',

'fg color': '#D7E4BC',
})

7.35. worksheet.merge_range()

87

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.0.2

worksheet.merge range('B3:D4', 'Merged Cells', merge format)
8 00 | mergel.xlsx
Home | Layout | Tables | Charts | SmartArt | b5 IR - R
Al4 110 o (- A |~
1 . B | C | D s =
1
2
3
Merged Cells
4
]
6
ri
B
9
10
Y g ML shees /- i
= [L (+] | |

Mormal View Ready o

See Example: Merging Cells for more details.

The merge range() method writes its data argument using write (). Therefore it will handle
numbers, strings and formulas as usual. If this doesn’t handle your data correctly then you can
overwrite the first cell with a call to one of the other write * () methods using the same Format
as in the merged cells. See Example: Merging Cells with a Rich String.

88 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

® 00 [merge_rich_string.xlsx
Home | Layout | Tables | Charts | SmartArt | M| v Bt~
A25 10 @ (= fx| A
T A VIV U oSN N N S —_— -
1
2
3 L o
2 This is red and this is blue
5
6
7
B
9
FEE-— l Sh!!tl_ |||
Mormal View Ready o

Note: Merged ranges generally don’t work in XlsxWriter when Workbook() ’con-
stant_memory’ mode is enabled.

7.36 worksheet.autofilter()

autofilter (first_row, first_col, last _row, last _col)
Set the autofilter area in the worksheet.

Parameters
« first_row (int) — The first row of the range. (All zero indexed.)
« first_col (int) — The first column of the range.
+ last_row (int) — The last row of the range.
« last_col (int) — The last col of the range.

The autofilter() method allows an autofilter to be added to a worksheet. An autofilter is a
way of adding drop down lists to the headers of a 2D range of worksheet data. This allows users
to filter the data based on simple criteria so that some data is shown and some is hidden.

7.36. worksheet.autofilter() 89

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.0.2

8 00 ™| autofilter.xlsx

Home | Layout | Tables | Charts | SmartArt | b5 I -
Al | @ @ (= fx| Region |-
_| B | [| D -
Region -7 Item |E| Volume Month |E|

3 |East Apple 5000 July

21 |East Grape 7000 December

33 |East Orange 4000 October

37 |East Grape 7000 October

44 |East Apple 5000 April

51 |East Grape 6000 February

52

53

54

55

56

44 bl l Sheetl J Sheet2 J Sheet3 J Sheetd J Sheets J shell ||

Mormal View Filter Mode w

To add an autofilter to a worksheet:

worksheet.autofilter('A1:D11")

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.autofilter(0, 0, 10, 3)
worksheet.autofilter('A1:D11")

See Working with Cell Notation for more details.

Filter conditions can be applied using the filter column() or filter column list()
methods.

See Working with Autofilters for more details.

7.37 worksheet.filter_column()

filter_column(col, criteria)
Set the column filter criteria.

Parameters

+ col (int) — Filter column (zero-indexed).

90

Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.0.2

« criteria (siring) — Filter criteria.

The filter column method can be used to filter columns in a autofilter range based on simple
conditions.

The conditions for the filter are specified using simple expressions:

worksheet.filter column('A', 'x > 2000")
worksheet.filter column('B', 'x > 2000 and x < 5000")

The col parameter can either be a zero indexed column number or a string column name:

worksheet.filter column(2, "X > 2000")
worksheet.filter column('C', 'x > 2000")

See Working with Cell Notation for more details.

It isn’t sufficient to just specify the filter condition. You must also hide any rows that don’t match
the filter condition. See Working with Autofilters for more details.

7.38 worksheet.filter _column_list()

filter_column_list (col, filters)
Set the column filter criteria in Excel 2007 list style.

Parameters
+ col (int) — Filter column (zero-indexed).
« filters (/ist) — List of filter criteria to match.

The filter column list() method can be used to represent filters with multiple selected
criteria:

worksheet.filter column_list('A', ['March', 'April', 'May'l])

The col parameter can either be a zero indexed column number or a string column name:

worksheet.filter column_ list(2, ['March', 'April', 'May'l])
worksheet.filter column list('C', ['March', "April', 'May'l])

See Working with Cell Notation for more details.
One or more criteria can be selected:

worksheet.filter column list('A', ['March'])
worksheet.filter column list('C', [100, 110, 120, 130])

To filter blanks as part of the list use Blanks as a list item:

worksheet.filter column list('A', ['March', 'April', 'May', 'Blanks'])

It isn’t sufficient to just specify filters. You must also hide any rows that don’t match the filter
condition. See Working with Autofilters for more details.

7.38. worksheet.filter_column_list() 91

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

Creating Excel files with Python and XisxWriter, Release 3.0.2

7.39 worksheet.set_selection()

set_selection(first_row, first _col, last_row, last col)
Set the selected cell or cells in a worksheet.

Parameters
« first_row (/nt) — The first row of the range. (All zero indexed.)
« first_col (int) — The first column of the range.
* last_row (int) — The last row of the range.
* last_col (inf) — The last col of the range.

The set selection() method can be used to specify which cell or range of cells is selected in
a worksheet. The most common requirement is to select a single cell, in which case the first
and last parameters should be the same.

The active cell within a selected range is determined by the order in which first and last
are specified.

Examples:

worksheetl.set selection
worksheet2.set selection
worksheet3.set selection
worksheet4.set selection
worksheet5.set selection
worksheet6.set selection

’ 3! 3!
’ 3! 6!
' 6r 3!
D4')

D4:G7")

3
3
6
'G7:D4")

—~ o~~~ o~ o~

As shown above, both row-column and A1 style notation are supported. See Working with Cell
Notation for more details. The default cell selectionis (0, 0), "Al’.

7.40 worksheet.set_top_left_cell()

set_top_left_cell(row, col)
Set the first visible cell at the top left of a worksheet.

Parameters
* row (/int) — The cell row (zero indexed).
* col (int) — The cell column (zero indexed).

This set _top left cell method can be used to set the top leftmost visible cell in the work-
sheet:

worksheet.set top left cell(31, 26)

worksheet.set top left cell('AA32")

92 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.0.2

[NN top_left_cell.xlsx
| A Home | Layout | Tables | Charts | SmartArt | »| v L

AH2 L € fx| |~
LA Ll AR .l ac _l AN | _aF [_AF L. J—

32
33
34

35
36 |
| 37|
38

39
40 |
41
a2

43

AA
A 4 &P | 5h +

Mormal View Ready e

As shown above, both row-column and A1 style notation are supported. See Working with Cell
Notation for more details.

7.41 worksheet.freeze panes()

freeze_panes (row, co/[, top_row, left_col])
Create worksheet panes and mark them as frozen.

Parameters
 row (int) — The cell row (zero indexed).
+ col (int) — The cell column (zero indexed).
+ top_row (inf) — Topmost visible row in scrolling region of pane.
« left_col (int) — Leftmost visible row in scrolling region of pane.

This freeze panes method can be used to divide a worksheet into horizontal or vertical regions
known as panes and to “freeze” these panes so that the splitter bars are not visible.

The parameters row and col are used to specify the location of the split. It should be noted that
the split is specified at the top or left of a cell and that the method uses zero based indexing.

7.41. worksheet.freeze_panes() 93

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.0.2

Therefore to freeze the first row of a worksheet it is necessary to specify the split at row 2 (which
is 1 as the zero-based index).

You can set one of the row and col parameters as zero if you do not want either a vertical or
horizontal split.

Examples:

worksheet.freeze panes(
worksheet.freeze panes('A
worksheet.freeze panes|(
worksheet.freeze panes('B
worksheet.freeze panes(

('c

1,
0,
1,
worksheet.freeze panes('

As shown above, both row-column and A1 style notation are supported. See Working with Cell
Notation for more details.

The parameters top row and left col are optional. They are used to specify the top-most or
left-most visible row or column in the scrolling region of the panes. For example to freeze the first
row and to have the scrolling region begin at row twenty:

worksheet.freeze panes(1l, 0, 20, 0)

You cannot use A1 notation for the top row and left col parameters.

See Example: Freeze Panes and Split Panes for more details.

7.42 worksheet.split_panes()

split_panes(x, y[, top_row, left co/])
Create worksheet panes and mark them as split.

Parameters
* x (float) — The position for the vertical split.
* y (float) — The position for the horizontal split.
* top_row (int) — Topmost visible row in scrolling region of pane.
« left_col (int) — Leftmost visible row in scrolling region of pane.

The split panes method can be used to divide a worksheet into horizontal or vertical regions
known as panes. This method is different from the freeze panes() method in that the splits
between the panes will be visible to the user and each pane will have its own scroll bars.

The parameters y and x are used to specify the vertical and horizontal position of the split. The
units for y and x are the same as those used by Excel to specify row height and column width.
However, the vertical and horizontal units are different from each other. Therefore you must specify
the y and x parameters in terms of the row heights and column widths that you have set or the
default values which are 15 for a row and 8. 43 for a column.

94 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.0.2

You can set one of the y and x parameters as zero if you do not want either a vertical or horizontal
split. The parameters top row and left col are optional. They are used to specify the top-
most or left-most visible row or column in the bottom-right pane.

Example:

worksheet.split panes(15, 0)
worksheet.split panes(0, 8.43)
worksheet.split panes(15, 8.43)

You cannot use A1 notation with this method.

See Example: Freeze Panes and Split Panes for more details.

7.43 worksheet.set zoom()

set_zoom(zoom)
Set the worksheet zoom factor.

Parameters zoom (int) — Worksheet zoom factor.
Set the worksheet zoom factor in the range 10 <= zoom <= 400:

50)
75)
300)
400)

worksheetl.set zoom
worksheet2.set zoom
worksheet3.set zoom
worksheet4.set zoom

—~ e~~~

The default zoom factor is 100. It isn’t possible to set the zoom to “Selection” because it is calcu-
lated by Excel at run-time.

Note, set zoom() does not affect the scale of the printed page. For that you should use
set print scale().

7.44 worksheet.right_to_left()

right_to_left()
Display the worksheet cells from right to left for some versions of Excel.

The right to left() method is used to change the default direction of the worksheet from
left-to-right, with the A1 cell in the top left, to right-to-left, with the A1 cell in the top right:

worksheet.right to left()

This is useful when creating Arabic, Hebrew or other near or far eastern worksheets that use
right-to-left as the default direction.

7.43. worksheet.set_zoom() 95

https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.0.2

Home Insert Draw Page Layout = Share [J1 Comments

N8 . frx v
E D C B A

English text / 4= =3 1
e pal f English text. 2
English text / 4,& a5 3

4

W 0o =] o wn

+ Sheet2 Sheet1
HH E - e — 125%

See also the Format set reading order () property to set the direction of the text withing cells
and the Example: Left to Right worksheets and text example program.

7.45 worksheet.hide zero()

hide_zero()
Hide zero values in worksheet cells.

The hide zero() method is used to hide any zero values that appear in cells:

worksheet.hide zero()

7.46 worksheet.set_background()

set_background filenamel, is_byte stream])
Set the background image for a worksheet.

Parameters

« filename (str) — The image file (or byte stream).

96 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/stdtypes.html#str

Creating Excel files with Python and XlsxWriter, Release 3.0.2

+ is_byte_stream (bool) — The file is a stream of bytes.
The set _background () method can be used to set the background image for the worksheet:

worksheet.set background('logo.png"')

[NON [background.xlsx
| A Home | Layout | Tables | Charts | SmartArt |) v fi~
A74 110 & (~ fx| |+
- e B [€ [b [E | F [& | HI[=
1 e .l e .l
2 | MR Nniithn _MEE NnLithn
3 _' '.J'\..j Ll 1vwri i I- '.J'\..-ILI 1Fl 1 ’
A | o1 | I P
5 POWCIEU POWEICU
E‘ 1 1
7 [|1 I N . fa 1 I N
8 | omlillo [IITH] | ol [DLILTRCOITD | .
9 | = " J e
lu ‘ r"\r\'lu.rnr‘nrl - r‘\nlu.rnr'f"!rl 1
11 PUVETCU PpUVETCU
12) -) -
13 m. M W | ll'l'ﬁ..i'-\ﬁ _ N | ll'l'ﬁhﬁ
14 | sl DJULITUNT | -l [JUILITUI
Bl = LR MR = L)
1 — powered | ® powered | |
Sy T I s I
— | Mormal View | Ready &

The set background() method supports all the image formats supported by in-
sert image().

Some people use this method to add a watermark background to their document. However, Mi-
crosoft recommends using a header image to set a watermark. The choice of method depends
on whether you want the watermark to be visible in normal viewing mode or just when the file is
printed. In XlsxWriter you can get the header watermark effect using set header():

worksheet.set header('&C&G', {'image center': 'watermark.png'})

It is also possible to pass an in-memory byte stream to set background() if the
is byte stream parameter is set to True. The stream should be i0.BytesIO:

worksheet.set background(io bytes, is byte stream=True)

See Example: Setting the Worksheet Background for an example.

7.46. worksheet.set_background() 97

https://docs.python.org/3/library/functions.html#bool
https://support.microsoft.com/en-us/office/add-a-watermark-in-excel-a372182a-d733-484e-825c-18ddf3edf009
https://docs.python.org/3/library/io.html#io.BytesIO

Creating Excel files with Python and XisxWriter, Release 3.0.2

7.47 worksheet.set_tab _color()

set_tab_color()
Set the color of the worksheet tab.

Parameters color (siring) — The tab color.
The set_tab color() method is used to change the color of the worksheet tab:

worksheetl.set tab color('red')
worksheet2.set tab color('#FF9900') # Orange

The color can be a Html style #RRGGBB string or a limited number named colors, see Working with
Colors.

See Example: Setting Worksheet Tab Colors for more details.

7.48 worksheet.protect()

protect()
Protect elements of a worksheet from modification.

Parameters
» password (string) — A worksheet password.
» options (dict) — A dictionary of worksheet options to protect.
The protect () method is used to protect a worksheet from modification:

worksheet.protect()

The protect () method also has the effect of enabling a cell's Locked and hidden properties if
they have been set. A locked cell cannot be edited and this property is on by default for all cells.
A hidden cell will display the results of a formula but not the formula itself. These properties can
be set using the set locked() and set hidden() format methods.

You can optionally add a password to the worksheet protection:
worksheet.protect('abcl23")

’

Passing the empty string ’ ' is the same as turning on protection without a password.

You can specify which worksheet elements you wish to protect by passing a dictionary in the
options argument with any or all of the following keys:

Default values shown.
options = {

'objects': False,
'scenarios': False,
'format cells': False,
‘format columns': False,
‘format rows': False,

98 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.0.2

‘insert columns': False,
‘insert rows': False,
‘insert hyperlinks': False,
'delete columns': False,
'delete rows': False,
'select locked cells': True,

‘sort': False,
'autofilter': False,
'pivot tables': False,

'select unlocked cells': True,

}

The default boolean values are shown above. Individual elements can be protected as follows:

worksheet.protect('abcl23', {'insert rows': True})

For chartsheets the allowable options and default values are:

options = {
'objects': True,
‘content': True,

}

See also the set locked() and set hidden() format methods and Example: Enabling Cell
protection in Worksheets.

Note: Worksheet level passwords in Excel offer very weak protection. They do not encrypt your
data and are very easy to deactivate. Full workbook encryption is not supported by XLsxWriter.

However, it is possible to encrypt an XlsxWriter file using a third party open source tool called
msoffice-crypt. This works for macOS, Linux and Windows:

msoffice-crypt.exe -e -p password clear.xlsx encrypted.xlsx

7.49 worksheet.unprotect_range()

unprotect_range(cell_range, range_name)
Unprotect ranges within a protected worksheet.

Parameters
« cell_range (string) — The cell or cell range to unprotect.
* range_name (siring) — An name for the range.

The unprotect range() method is used to unprotect ranges in a protected worksheet. It can
be used to set a single range or multiple ranges:

worksheet.unprotect range('Al")
worksheet.unprotect range('Cl')
worksheet.unprotect range('E1:E3")
worksheet.unprotect range('G1:K100')

7.49. worksheet.unprotect_range() 99

https://github.com/herumi/msoffice
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.0.2

As in Excel the ranges are given sequential names like Rangel and Range2 but a user defined
name can also be specified:

worksheet.unprotect range('G4:16', 'MyRange')

7.50 worksheet.set_default_row()

set_default_row(height, hide unused rows)
Set the default row properties.

Parameters
* height (float) — Default height. Optional, defaults to 15.

+ hide_unused_rows (bool) — Hide unused rows. Optional, defaults to
False.

The set default row() method is used to set the limited number of default row properties
allowed by Excel which are the default height and the option to hide unused rows. These param-
eters are an optimization used by Excel to set row properties without generating a very large file
with an entry for each row.

To set the default row height:

worksheet.set default row(24)

To hide unused rows:

worksheet.set default row(hide unused rows=True)

See Example: Hiding Rows and Columns for more details.

7.51 worksheet.outline_settings()

outline_settings (visible, symbols_below, symbols_right, auto_style)
Control outline settings.

Parameters
« visible (bool) — Outlines are visible. Optional, defaults to True.

» symbols_below (boo/) — Show row outline symbols below the outline bar.
Optional, defaults to True.

» symbols_right (boo/) — Show column outline symbols to the right of the
outline bar. Optional, defaults to True.

+ auto_style (bool) — Use Automatic style. Optional, defaults to False.

100 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Creating Excel files with Python and XlsxWriter, Release 3.0.2

The outline settings() method is used to control the appearance of outlines in Excel. Out-
lines are described in Working with Outlines and Grouping:

worksheetl.outline settings(False, False, False, True)
The 'visible' parameter is used to control whether or not outlines are visible. Setting this
parameter to False will cause all outlines on the worksheet to be hidden. They can be un-hidden

in Excel by means of the “Show Outline Symbols” command button. The default setting is True
for visible outlines.

The "symbols below’ parameter is used to control whether the row outline symbol will appear
above or below the outline level bar. The default setting is True for symbols to appear below the
outline level bar.

The 'symbols right’ parameter is used to control whether the column outline symbol will
appear to the left or the right of the outline level bar. The default setting is True for symbols to
appear to the right of the outline level bar.

The 'auto style’ parameter is used to control whether the automatic outline generator in Ex-
cel uses automatic styles when creating an outline. This has no effect on a file generated by
XlsxWriter but it does have an effect on how the worksheet behaves after it is created. The
default setting is False for “Automatic Styles” to be turned off.

The default settings for all of these parameters correspond to Excel’s default parameters.

The worksheet parameters controlled by outline settings() are rarely used.

7.52 worksheet.set_vba name()

set_vba_name (name)
Set the VBA name for the worksheet.

Parameters name (siring) — The VBA name for the worksheet.

The set _vba name() method can be used to set the VBA codename for the worksheet (there
is a similar method for the workbook VBA name). This is sometimes required when a vbaProject
macro included via add_vba project() refers to the worksheet. The default Excel VBA name
of Sheetl, etc., is used if a user defined name isn’t specified.

See Working with VBA Macros for more details.

7.53 worksheet.ignore_errors()

ignore_errors (options)
Ignore various Excel errors/warnings in a worksheet for user defined ranges.

Returns 0: Success.

Returns -1: Incorrect parameter or option.

7.52. worksheet.set_vba_name() 101

https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.0.2

The ignore_errors() method can be used to ignore various worksheet cell errors/warnings.
For example the following code writes a string that looks like a number:

worksheet.write string('D2', '123")

This causes Excel to display a small green triangle in the top left hand corner of the cell to indicate
an error/warning:

00 [7 ignore_warning.xlsx
| # Home | Layout Tables | Charts | SmartArt |}}_ v I3
A22 : fx| |~
A A R N - R - W - ———
1
[- | L
2 ﬂ Mumber Stored as Text | 123
% Convert to Number
5 Help on this error
6 Ignore Error
L Edit in Formula Bar
8
T Error Checking Options...
10
11
12
1>
“< < > v I sheetr [+) I
Mormal ¥iew Ready A

Sometimes these warnings are useful indicators that there is an issue in the spreadsheet but
sometimes it is preferable to turn them off. Warnings can be turned off at the Excel level for all
workbooks and worksheets by using the using “Excel options -> Formulas -> Error checking rules”.
Alternatively you can turn them off for individual cells in a worksheet, or ranges of cells, using the
ignore errors() method with a dict of options and ranges like this:

worksheet.ignore errors({'number stored as text': 'Al:H50'})

Or for more than one option:
worksheet.ignore errors({'number stored as text': 'Al:H50°',
‘eval error': "A1:H50'})

The range can be a single cell, a range of cells, or multiple cells and ranges separated by spaces:

Single cell.
worksheet.ignore errors({'eval error': 'C6'})

102 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

worksheet.ignore errors({'eval error': 'C6:G8'})

worksheet.ignore errors({'eval error': 'C6 E6 G1:G20 J2:J6'})

Note: calling ignore_errors () multiple times will overwrite the previous settings.

You can turn off warnings for an entire column by specifying the range from the first cell in the
column to the last cell in the column:

worksheet.ignore errors({'number stored as text': 'Al:A1048576'})

Or for the entire worksheet by specifying the range from the first cell in the worksheet to the last
cell in the worksheet:

worksheet.ignore errors({'number stored as text': 'Al:XFD1048576'})

The worksheet errors/warnings that can be ignored are:

number stored as text: Turn off errors/warnings for numbers stores as text.
eval _error: Turn off errors/warnings for formula errors (such as divide by zero).

formula differs: Turn off errors/warnings for formulas that differ from surrounding for-
mulas.

formula range: Turn off errors/warnings for formulas that omit cells in a range.
formula_unlocked: Turn off errors/warnings for unlocked cells that contain formulas.
empty cell reference: Turn off errors/warnings for formulas that refer to empty cells.

list data validation: Turn off errors/warnings for cells in a table that do not comply
with applicable data validation rules.

calculated column: Turn off errors/warnings for cell formulas that differ from the column
formula.

two digit text year: Turn off errors/warnings for formulas that contain a two digit text
representation of a year.

See also Example: Ignoring Worksheet errors and warnings.

7.53.

worksheet.ignore_errors() 103

Creating Excel files with Python and XisxWriter, Release 3.0.2

104 Chapter 7. The Worksheet Class

CHAPTER
EIGHT

THE WORKSHEET CLASS (PAGE SETUP)

Page set-up methods affect the way that a worksheet looks to the user or when it is printed. They
control features such as paper size, orientation, page headers and margins and gridlines.

These methods are really just standard worksheet methods. They are documented separately for
the sake of clarity.

8.1 worksheet.set_landscape()

set_landscape()
Set the page orientation as landscape.

This method is used to set the orientation of a worksheet’s printed page to landscape:

worksheet.set landscape()

8.2 worksheet.set_portrait()

set_portrait()
Set the page orientation as portrait.

This method is used to set the orientation of a worksheet’s printed page to portrait. The default
worksheet orientation is portrait, so you won’t generally need to call this method:

worksheet.set portrait()

8.3 worksheet.set_page view()

set_page view()
Set the page view mode.

This method is used to display the worksheet in “Page View/Layout” mode:

105

Creating Excel files with Python and XisxWriter, Release 3.0.2

worksheet.set page view()

8.4 worksheet.set_paper()

set_paper (index)

This method is used to set the paper format for the printed output of a worksheet. The following

Set the paper type.

Parameters index (int) — The Excel paper format index.

paper styles are available:

Index | Paper format Paper size

0 Printer default Printer default

1 Letter 81/2x11in

2 Letter Small 81/2x11in

3 Tabloid 11 x17in

4 Ledger 17 x 11in

5 Legal 81/2x14in

6 Statement 51/2x81/2in

7 Executive 71/4x101/2in

8 A3 297 x 420 mm

9 A4 210 x 297 mm

10 A4 Small 210 x 297 mm

11 A5 148 x 210 mm

12 B4 250 x 354 mm

13 B5 182 x 257 mm

14 Folio 81/2x13in

15 Quarto 215 x 275 mm

16 — 10x14 in

17 — 11x17 in

18 Note 81/2x11in

19 Envelope 9 37/8x87/8

20 Envelope 10 41/8x91/2

21 Envelope 11 41/2x103/8

22 Envelope 12 4 3/4 x 11

23 Envelope 14 5x111/2

24 C size sheet —

25 D size sheet —

26 E size sheet —

27 Envelope DL 110 x 220 mm

28 Envelope C3 324 x 458 mm

29 Envelope C4 229 x 324 mm

30 Envelope C5 162 x 229 mm

31 Envelope C6 114 x 162 mm

32 Envelope C65 114 x 229 mm
Continued on next page

106

Chapter 8. The Worksheet Class (Page Setup)

https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.0.2

Table 8.1 — continued from previous page

Index | Paper format Paper size

33 Envelope B4 250 x 353 mm
34 Envelope B5 176 x 250 mm
35 Envelope B6 176 x 125 mm
36 Envelope 110 x 230 mm
37 Monarch 3.875x7.5in
38 Envelope 35/8x61/2in
39 Fanfold 147/8 x 11 in
40 German Std Fanfold 81/2x12in
41 German Legal Fanfold | 8 1/2 x 13 in

Note, it is likely that not all of these paper types will be available to the end user since it will depend
on the paper formats that the user’s printer supports. Therefore, it is best to stick to standard paper
types:

worksheet.set paper(1l)
worksheet.set paper(9)

If you do not specify a paper type the worksheet will print using the printer’s default paper style.

8.5 worksheet.center_horizontally()

center_horizontally()
Center the printed page horizontally.

Center the worksheet data horizontally between the margins on the printed page:

worksheet.center horizontally()

8.6 worksheet.center_vertically()

center_vertically()
Center the printed page vertically.

Center the worksheet data vertically between the margins on the printed page:

worksheet.center vertically()

8.7 worksheet.set_margins()

set_margins ([left=0.7,] right=0.7,] top=0.75,] bottom=0.75]]])
Set the worksheet margins for the printed page.

Parameters

8.5. worksheet.center_horizontally() 107

Creating Excel files with Python and XisxWriter, Release 3.0.2

* left (float) — Left margin in inches. Default 0.7.

* right (float) — Right margin in inches. Default 0.7.

* top (float) — Top margin in inches. Default 0.75.

» bottom (float) — Bottom margin in inches. Default 0.75.

The set_margins () method is used to set the margins of the worksheet when it is printed. The
units are in inches. All parameters are optional and have default values corresponding to the
default Excel values.

8.8 worksheet.set_header()

set_header (/header=",] options]])
Set the printed page header caption and options.

Parameters
 header (siring) — Header string with Excel control characters.
« options (dict) — Header options.

Headers and footers are generated using a string which is a combination of plain text and control
characters.

The available control character are:

Control Category Description

&L Justification | Left

&C Center

&R Right

&P Information | Page number

&N Total number of pages
&D Date

&T Time

&F File name

&A Worksheet name
&Z Workbook path
&fontsize Font Font size
&”font,style” Font name and style
&U Single underline

&E Double underline
&S Strikethrough

&X Superscript

&Y Subscript

&[Picture] Images Image placeholder
&G Same as &[Picture]
&& Misc. Literal ampersand “&”

Text in headers and footers can be justified (aligned) to the left, center and right by prefixing the
text with the control characters &L, &C and &R.

108 Chapter 8. The Worksheet Class (Page Setup)

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.0.2

For example:

worksheet.set header('&LHello')

For simple text, if you do not specify any justification the text will be centered. However, you must
prefix the text with &C if you specify a font name or any other formatting:

worksheet.set header('Hello')

You can have text in each of the justification regions:

worksheet.set header('&LCiao&(CBello&RCielo"')

The information control characters act as variables that Excel will update as the workbook or
worksheet changes. Times and dates are in the users default format:

worksheet.set header('&CPage &P of &N')

| Page 1 of 6 |

8.8. worksheet.set_header() 109

Creating Excel files with Python and XisxWriter, Release 3.0.2

worksheet.set header('&CUpdated at &T')

| Updated at 12:30 PM [

Images can be inserted using the options shown below. Each image must have a placeholder
in header string using the &[Picture] or &G control characters:

worksheet.set header('&L&G', {'image left': 'logo.jpg'})

e 0o [headers_footers.xlsx
Home | Layout | Tables | Charts | SmartArt | b5 I -
All 10 @ (= A |~

'_I -:l-1|-|-|-|-1|-|-2|-|-5|-|-4|-|-5|-|-ﬁ|-|-?|-|-3|-|-ﬂ|:

ﬁ pgthon

powered

= 3 -:.

1

Select Print Preview to see the header and footer

2
- S

—— R l simple | Image | Variables Il
Page Layout View | Ready P

8
{EEE |
{EEE |

You can specify the font size of a section of the text by prefixing it with the control character &n
where n is the font size:

worksheetl.set header('&C&30Hello Big')
worksheet2.set header('&C&10OHello Small')

You can specify the font of a section of the text by prefixing it with the control sequence
&"font,style" where fontname is a font name such as “Courier New” or “Times New Ro-
man” and style is one of the standard Windows font descriptions: “Regular”, “Italic”, “Bold” or
“Bold ltalic”:

110 Chapter 8. The Worksheet Class (Page Setup)

Creating Excel files with Python and XlsxWriter, Release 3.0.2

worksheetl.set header('&C&"Courier New,Italic"Hello')
worksheet2.set header('&C&"Courier New,Bold Italic"Hello')
worksheet3.set header('&C&"Times New Roman,Regular"Hello')

It is possible to combine all of these features together to create sophisticated headers and footers.
As an aid to setting up complicated headers and footers you can record a page set-up as a macro
in Excel and look at the format strings that VBA produces. Remember however that VBA uses
two double quotes "" to indicate a single double quote. For the last example above the equivalent
VBA code looks like this:

.LeftHeader = ""
.CenterHeader = "&""Times New Roman,Regular""Hello"
.RightHeader = ""

Alternatively you can inspect the header and footer strings in an Excel file by unzipping it and
grepping the XML sub-files. The following shows how to do that using libxml’s xmllint to format the
XML for clarity:

$ unzip myfile.xlsm -d myfile
$ xmllint --format find myfile -name "*.xml" | xargs | egrep "Header|Footer" | sed 's,

<headerFooter scaleWithDoc="0">
<oddHeader>&L&P</oddHeader>
</headerFooter>

To include a single literal ampersand & in a header or footer you should use a double ampersand
&&:

worksheetl.set header('&CCuriouser && Curiouser - Attorneys at Law')

The available options are:
» margin: (float) Header margin in inches. Defaults to 0.3 inch.
« image left: (string) The path to the image. Needs &G placeholder.
« image_ center: (string) Same as above.
« image right: (string) Same as above.
« image data left: (ByteslO) A byte stream of the image data.
« image data center: (ByteslO) Same as above.
- image data right: (ByteslO) Same as above.
* scale with doc: (boolean) Scale header with document. Defaults to True.
« align with margins: (boolean) Align header to margins. Defaults to True.

As with the other margins the margin value should be in inches. The default header and footer
margin is 0.3 inch. It can be changed as follows:

worksheet.set header('&CHello', {'margin': 0.75})

8.8. worksheet.set_header() 111

http://xmlsoft.org/xmllint.html

Creating Excel files with Python and XisxWriter, Release 3.0.2

The header and footer margins are independent of, and should not be confused with, the top and
bottom worksheet margins.

The image options must have an accompanying &[Picture] or &G control character in the
header string:

worksheet.set header('&L&[Picture]&C&[Picture]&R&[Picture] ',

{'image left': ‘'red.jpg',
‘image center': 'blue.jpg’,
‘image right': ‘'yellow.jpg'})

The image data parameters are used to add an in-memory byte stream in i0.BytesIO for-
mat:

image file
image data

open('logo.jpg', 'rb")
BytesIO(image file.read())

worksheet.set header('&L&G',
{'image left': 'logo.jpg’',
'image data left': image data})

When using the image data_parameters a filename must still be passed to to the equivalent
image parameter since it is required by Excel. See also insert image() for details on han-
dling images from byte streams.

Note, Excel does not allow header or footer strings longer than 255 characters, including control
characters. Strings longer than this will not be written and a warning will be issued.

See also Example: Adding Headers and Footers to Worksheets.

8.9 worksheet.set_footer()

set_footer ([footer=",] options]])
Set the printed page footer caption and options.

Parameters
« footer (siring) — Footer string with Excel control characters.
« options (dict) — Footer options.

The syntax of the set _footer() method is the same as set header().

8.10 worksheet.repeat_rows()

repeat_rows (first_row|, last_row])
Set the number of rows to repeat at the top of each printed page.

Parameters

« first_row (int) — First row of repeat range.

112 Chapter 8. The Worksheet Class (Page Setup)

https://docs.python.org/3/library/io.html#io.BytesIO
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.0.2

* last_row (int) — Last row of repeat range. Optional.

For large Excel documents it is often desirable to have the first row or rows of the worksheet print
out at the top of each page.

This can be achieved by using the repeat rows () method. The parameters first row and
last_row are zero based. The last_row parameter is optional if you only wish to specify one
row:

worksheetl.repeat rows(0)
worksheet2.repeat rows(0, 1)

8.11 worksheet.repeat_columns()

repeat_columns (first_coll, last col])
Set the columns to repeat at the left hand side of each printed page.

Parameters
« first_col (int) — First column of repeat range.
« last_col (int) — Last column of repeat range. Optional.

For large Excel documents it is often desirable to have the first column or columns of the worksheet
print out at the left hand side of each page.

This can be achieved by using the repeat columns() method. The parameters
first column and last column are zero based. The last column parameter is optional
if you only wish to specify one column. You can also specify the columns using A1 column nota-
tion, see Working with Cell Notation for more details.:

worksheetl.repeat columns (0

worksheet2.repeat columns (0
(')
(

)
)

worksheet3.repeat columns

)

, 1

A:A
worksheet4.repeat columns('A:B

8.12 worksheet.hide_gridlines()

hide_gridlines ([option=1])
Set the option to hide gridlines on the screen and the printed page.

Parameters option (int) — Hide gridline options. See below.

This method is used to hide the gridlines on the screen and printed page. Gridlines are the lines
that divide the cells on a worksheet. Screen and printed gridlines are turned on by default in an
Excel worksheet.

If you have defined your own cell borders you may wish to hide the default gridlines:

8.11. worksheet.repeat_columns() 113

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.0.2

worksheet.hide gridlines()

The following values of option are valid:
0. Don'’t hide gridlines.
1. Hide printed gridlines only.
2. Hide screen and printed gridlines.

If you don’t supply an argument the default option is 1, i.e. only the printed gridlines are hidden.

8.13 worksheet.print_row_col_headers()

print_row_col_headers()
Set the option to print the row and column headers on the printed page.

When you print a worksheet from Excel you get the data selected in the print area. By default
the Excel row and column headers (the row numbers on the left and the column letters at the top)
aren’t printed.

The print row col headers() method sets the printer option to print these headers:

worksheet.print row col headers()

8.14 worksheet.hide row col headers()

hide_row_col_headers()
Set the option to hide the row and column headers in a worksheet.

This method is similar to the print _row col headers() except that it hides the row and col-
umn headers on the worksheet:

worksheet.hide row col headers()

114 Chapter 8. The Worksheet Class (Page Setup)

Creating Excel files with Python and XlsxWriter, Release 3.0.2

[NON | [hide_row_col_headers.xlsx
| # Home | Layout Tables | Charts | SmartArt | » v L~
A15 = fx -
44k Shetll'!+,.|
_||. |
Mormal ¥iew Ready s

8.15 worksheet.print_area()

print_area(first_row, first_col, last_row, last _col)
Set the print area in the current worksheet.

Parameters
« first_row (integer) — The first row of the range. (All zero indexed.)
« first_col (integer) — The first column of the range.
« last_row (integer) — The last row of the range.
« last_col (integer) — The last col of the range.

Returns 0: Success.

Returns -1: Row or column is out of worksheet bounds.

This method is used to specify the area of the worksheet that will be printed.

All four parameters must be specified. You can also use A1 notation, see Working with Cell
Notation:

8.15. worksheet.print_area() 115

Creating Excel files with Python and XisxWriter, Release 3.0.2

worksheetl.print area('Al1:H20")
worksheet2.print area(0, 0, 19, 7)

In order to set a row or column range you must specify the entire range:

worksheet3.print area('A1:H1048576")

8.16 worksheet.print_across()

print_across()
Set the order in which pages are printed.

The print_across method is used to change the default print direction. This is referred to by
Excel as the sheet “page order”:

worksheet.print across()

The default page order is shown below for a worksheet that extends over 4 pages. The order is
called “down then across”:

(1] [3]
[2] [4]

However, by using the print across method the print order will be changed to “across then
down”:

[1] [2]
[31 [4]

8.17 worksheet.fit_to_pages()

fit_to_pages (width, height)
Fit the printed area to a specific number of pages both vertically and horizontally.

Parameters
» width (/nf) — Number of pages horizontally.
+ height (inf) — Number of pages vertically.

The fit to pages() method is used to fit the printed area to a specific number of pages both
vertically and horizontally. If the printed area exceeds the specified number of pages it will be
scaled down to fit. This ensures that the printed area will always appear on the specified number
of pages even if the page size or margins change:

worksheetl.fit to pages(1l, 1)
worksheet2.fit to pages(2, 1)
worksheet3.fit to pages(1l, 2)

116 Chapter 8. The Worksheet Class (Page Setup)

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.0.2

The print area can be defined using the print area() method as described above.

A common requirement is to fit the printed output to n pages wide but have the height be as long
as necessary. To achieve this set the height to zero:

worksheetl.fit to pages(l, 0) # 1 page wide and as long as necessary.

Note: Althoughitis validto use both fit to pages() andset print scale() onthe same
worksheet in Excel only allows one of these options to be active at a time. The last method call

made will set the active option.

Note: The fit to pages() will override any manual page breaks that are defined in the
worksheet.

Note: When using fit to pages () it may also be required to set the printer paper size using
set paper() orelse Excel will default to “US Letter”.

8.18 worksheet.set_start_page()

set_start_page()
Set the start/first page number when printing.

Parameters start_page (int) — Starting page number.

The set start page() method is used to set the page number of the starting page when the
worksheet is printed out. It is the same as the “First Page Number” option in Excel:

Start print from page 2.
worksheet.set start page(2)

8.19 worksheet.set_print_scale()

set_print_scale()
Set the scale factor for the printed page.

Parameters scale (int) — Print scale of worksheet to be printed.

Set the scale factor of the printed page. Scale factors in the range 10 <= $scale <= 400 are
valid:

worksheetl.set print scale(50)
worksheet2.set print scale(75)
worksheet3.set print scale(300)
worksheet4.set print scale(400)

The default scale factor is 100. Note, set print scale() does not affect the scale of the
visible page in Excel. For that you should use set zoom().

8.18. worksheet.set_start_page() 117

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.0.2

Note also that although it is valid to use both fit to pages() and set print scale() on
the same worksheet Excel only allows one of these options to be active at a time. The last method
call made will set the active option.

8.20 worksheet.set_h_pagebreaks()

set_h_pagebreaks (breaks)
Set the horizontal page breaks on a worksheet.

Parameters breaks (/ist) — List of page break rows.

The set _h pagebreaks () method adds horizontal page breaks to a worksheet. A page break
causes all the data that follows it to be printed on the next page. Horizontal page breaks act
between rows.

The set _h pagebreaks () method takes a list of one or more page breaks:

worksheetl.set v pagebreaks([20])
worksheet2.set v pagebreaks([20, 40, 60, 80, 100])

To create a page break between rows 20 and 21 you must specify the break at row 21. However
in zero index notation this is actually row 20. So you can pretend for a small while that you are
using 1 index notation:

worksheet.set h pagebreaks([20])

Note: Note: If you specify the “fit to page” option viathe fit to pages () method it will override
all manual page breaks.

There is a silent limitation of 1023 horizontal page breaks per worksheet in line with an Excel
internal limitation.

8.21 worksheet.set_v_pagebreaks()

set_v_pagebreaks (breaks)
Set the vertical page breaks on a worksheet.

Parameters breaks (/ist) — List of page break columns.

The set v _pagebreaks () method is the same as the above set h pagebreaks () method
except it adds page breaks between columns.

118 Chapter 8. The Worksheet Class (Page Setup)

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

CHAPTER
NINE

THE FORMAT CLASS

This section describes the methods and properties that are available for formatting cells in Excel.

The properties of a cell that can be formatted include: fonts, colors, patterns, borders, alignment

and number formatting.

8 00

 formats.xlsx

Home | Layout | Tables | Charts | Smartirt | »| v Lt~

& @ ([~ fx| Fonts

Al C

v

B | C

L

| Db | EE=

Fonts

FONTS

FONTS

Font color

Fills

Borders |
Bold

ftalic

Bold and Italic

el L
N,_lnmnnumm-hwm

PR lih!!tl|

Mormal View Ready

9.1 Creating and using a Format object

Cell formatting is defined through a Format object. Format objects are created by calling the

workbook add format () method as follows:

119

Creating Excel files with Python and XisxWriter, Release 3.0.2

cell formatl
cell format2

workbook.add format()
workbook.add format(props)

There are two ways of setting Format properties: by using the object interface or by setting the
property as a dictionary of key/value pairs in the constructor. For example, a typical use of the
object interface would be as follows:

cell format = workbook.add format()
cell format.set bold()
cell format.set font color('red')

By comparison the properties can be set by passing a dictionary of properties to the
add format () constructor:

cell format = workbook.add format({'bold': True, 'font color': 'red'})

In general the key/value interface is more flexible and clearer than the object method and is the
recommended method for setting format properties. However, both methods produce the same
result.

Once a Format object has been constructed and its properties have been set it can be passed as
an argument to the worksheet write () methods as follows:

worksheet.write (

worksheet.write string(1,
worksheet.write number(2,
worksheet.write blank (3,

0, 0, 'Foo', cell format
, 'Bar', cell format
, 3, cell format

Y, cell format

[cNoNoNO]

)
)
)
)
Formats can also be passed to the worksheet set row() and set column () methods to define

the default formatting properties for a row or column:

worksheet.set row(0, 18, cell format)
worksheet.set column('A:D', 20, cell format)

9.2 Format Defaults

The default Excel 2007+ cell format is Calibri 11 with all other properties off.
In general a format method call without an argument will turn a property on, for example:

cell format = workbook.add format()

cell format.set bold()
cell format.set bold(True)

Since most properties are already off by default it isn’t generally required to turn them off. However,
it is possible if required:

cell format.set bold(False)

120 Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

9.3 Modifying Formats

Each unique cell format in an XlsxWriter spreadsheet must have a corresponding Format object. It
isn’t possible to use a Format with awrite () method and then redefine it for use at a later stage.
This is because a Format is applied to a cell not in its current state but in its final state. Consider
the following example:

cell format = workbook.add format({'bold': True, 'font color': 'red'})
worksheet.write('Al', 'Cell Al', cell format)

cell format.set font color('green')
worksheet.write('B1', 'Cell B1', cell format)

Cell A1 is assigned a format which initially has the font set to the color red. However, the color is
subsequently set to green. When Excel displays Cell A1 it will display the final state of the Format
which in this case will be the color green.

9.4 Number Format Categories

The set num format () method, shown below, is used to set the number format for numbers:

import xlsxwriter

workbook = xlsxwriter.Workbook('currency format.xlsx")
worksheet = workbook.add worksheet()

currency format = workbook.add format({'num format': '$#,##0.00'})
worksheet.write('Al', 1234.56, currency format)

workbook. close()

If the number format you use is the same as one of Excel’s built in number formats then it will have
a number category such as General, Number, Currency, Accounting, Date, Time, Percentage,
Fraction, Scientific, Text, Special or Custom. In the case of the example above the formatted
output shows up as a Number category:

9.3. Modifying Formats 121

Creating Excel files with Python and XisxWriter, Release 3.0.2

®_® [currency_format.xlsx
|_| # Home | Layout Tables | Charts | SmartArt 3 A -
. Edit : Font éAlIgnmant : Mumber :

_§|{:alihn'[audy} |+ 1 |.| '

Cbawe [BII|UJB[AL wen |, S

|« Number
Al |:| 09 'i fx| 1234.56 Currency =
_ : B | C | D Accounting ¢ =]
1 §1,234.56 Date
1 Time I
2
Percentage
Fraction
Scientific
Text
Special
Custom...
< sheets [i
Mormal View Ready 4

If we wanted it to have a different category, such as Currency, then we would have to match the
number format string with the number format used by Excel. The easiest way to do this is to open
the Number Formatting dialog in Excel and set the format that you want:

122 Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

Format Cells

Category:

General
Number
Accounting
Date

Time
Percentage
Fraction
Scientific
Text
Special
Custom

Sample
$1,234.56
Decimal places: 2 .

Currency symbaol:
% English (United States)

Megative numbers:

-$1,234.10
$1,234.10
($1,234.10)
($1,234.10)

Currency formats are used for general monetary values. Use Accounting formats to align
decimal points im a column.

Then, while still in the dialog, change to Custom. The format displayed is the format used by Excel.

9.4. Number Format Categories

123

Creating Excel files with Python and XisxWriter, Release 3.0.2

Format Cells

Category: Sample

General $1,234.56

Number

Curr&n::'glr Type:

Accounting

Date [§5-409)# #£0.00

Time

Percentage General

Fraction o

Scientific 0.00

Text & &#HD

Special # ##0.00
##40_);(# ##0)

##0_):[Red] (# 3##0)

Delete

Type the number format code, using one of the existing codes as a starting point.

If we put the format that we found (' [$$-409]1#,##0.00") into our previous example and rerun
it we will get a number format in the Currency category:

import xlsxwriter

workbook = xlsxwriter.Workbook('currency format.xlsx")
worksheet = workbook.add worksheet()

currency format = workbook.add format({'num format': '[$$-409]#,##0.00'})
worksheet.write('Al', 1234.56, currency format)

124

Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

workbook. close()

Here is the output:

[NON [currency_format.xlsx
| A Home I Layout | Tables | Charts | SmartArt |})| A L5~
| Edit Font iﬁlignment Mumber Forr |
ﬁ _|calibri Body) |+ [11 [+] 1_ | Currency .
Fasta |E-Iir .gll&.'-i_nllé Allgn '@' % 'EFnrr:’imm?;I
Al 1 0 @ (- fx| 1234.56 |

A A VNSO [IS AU ;WU N DU N— —— -
0 [51,234 56)

2
3
4
5
6
Fil
3
—

(<< v v | sheets [+ I I

Mormal View Ready A

The same process can be used to find format strings for Date or Accountancy formats. However,
you also need to be aware of the OS settings Excel uses for number separators such as the
“grouping/thousands” separator and the “decimal” point. See the next section for details.

9.5 Number Formats in different locales

As shown in the previous section the set num format() method is used to set the number
format for Xlsxwriter formats. A common use case is to set a number format with a “group-
ing/thousands” separator and a “decimal” point:

import xlsxwriter

workbook = xlsxwriter.Workbook('number format.xlsx')
worksheet = workbook.add worksheet()

number format = workbook.add format({'num format': '#,##0.00'})
worksheet.write('Al', 1234.56, number format)

9.5. Number Formats in different locales 125

Creating Excel files with Python and XisxWriter, Release 3.0.2

workbook. close()

In the US locale (and some others) where the number “grouping/thousands” separator is ”;” and
the “decimal” point is ”.” this would be shown in Excel as:

[NN [number_format.xlsx
A Home | Layout Tables | Charts | SmartArt 3 v fi~
A1 1 0 @ (- fx| 1234.56 E

_ [T R RN VU NN SO S e
0 1,234.56]
2

7 [V EZ R [

Mormal ¥iew Ready

B

In other locales these values may be reversed or different. They are generally set in the “Region”
settings of Windows or Mac OS. Excel handles this by storing the number format in the file format
in the US locale, in this case #,##0.00, but renders it according to the regional settings of the
host OS. For example, here is the same, unmodified, output file shown above in a German locale:

o0 ® [number_format.xlsx
Home | Layout Tables | Charts | SmartArt) v £~

s 09 @ (- fx| 1234,56 E

A1
A A VU IS S ;YN N O E— ———
0| 1.234,56]
2

B ms L Shee [

Mormal View Ready

B

And here is the same file in a Russian locale. Note the use of a space as the “grouping/thousands”
separator:

126 Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

2

= 5

[number_format.xlsx
Home | Layout Tables | Charts | SmartArt |)), v It
A1 . fx| 1234,56 |+
'Y B | ¢ | b | E | F JI=
1 234,56

E A4 A P lﬁhEE‘ll‘!'l','

Mormal ¥iew

Ready

In order to replicate Excel's behavior all XlsxWriter programs should use US locale formatting
which will then be rendered in the settings of your host OS.

9.6 Format methods and Format properties

The following table shows the Excel format categories, the formatting properties that can be ap-
plied and the equivalent object method:

Category | Description Property Method Name
Font Font type "font_name’ set font name()
Font size "font _size’ set font size()
Font color "font _color’ set font color()
Bold "bold’ set bold()
Italic "italic’ set italic()
Underline "underline’ set underline()
Strikeout "font strikeout’ | set font strikeout()
Super/Subscript | 'font script’ set font script()
Number Numeric format "num_format’ set num format()
Protection | Lock cells "locked’ set locked()
Hide formulas "hidden’ set hidden()
Alignment | Horizontal align "align’ set align()
Vertical align "valign’ set align()
Rotation "rotation’ set rotation()
Text wrap "text wrap’ set text wrap()
Reading order "reading order’ set reading order()
Justify last "text justlast’ set text justlast()
Center across "center_across’ set center across()
Indentation "indent’ set _indent()
Shrink to fit "shrink’ set shrink()
Pattern Cell pattern "pattern’ set pattern()
Background color | "bg color’ set bg color()
Continued on next page

9.6. Format methods and Format properties

127

Creating Excel files with Python and XisxWriter, Release 3.0.2

Table 9.1 — continued from previous page

Category | Description Property Method Name
Foreground color | 'fg color’ set fg color()
Border Cell border "border’ set border()
Bottom border "bottom’ set bottom()
Top border "top’ set top()
Left border "left’ set left()
Right border "right’ set right()
Border color "border _color’ set border color()
Bottom color "bottom color’ set bottom color()
Top color "top_color’ set top color()
Left color "left_color’ set left color()
Right color "right color’ set right color()

The format properties and methods are explained in the following sections.

9.7 format.set font _name()

set_font_name (fontname)
Set the font used in the cell.

Parameters fontname (string) — Cell font.
Specify the font used used in the cell format:

cell format.set font name('Times New Roman')

i o format_example.xlsx
| # Home | Layout = Tables | Charts | SmartArt | » v -
Ad = fx -
_J A | B | C | D [E [[=]

1 Times New Roman

2
44 FF |Sheell‘]+,'

Mormal View Rieady o

Excel can only display fonts that are installed on the system that it is running on. Therefore it is
best to use the fonts that come as standard such as ‘Calibri’, “Times New Roman’ and ‘Courier
New’.

128 Chapter 9. The Format Class

https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XlsxWriter, Release 3.0.2

The default font for an unformatted cell in Excel 2007+ is ‘Calibri’.

9.8 format.set_font_size()

set_font_size(size)
Set the size of the font used in the cell.

Parameters size (int) — The cell font size.
Set the font size of the cell format:

cell format = workbook.add format()
cell format.set font size(30)

e @ format_example.xlsx
| # Home | Layout _ Tables | Charts | SmartArt | » v L5~
05 - fx -
Fi A | B | C | D | E | F |

. Font Size 30
<< >+l Sheet1 J+]

Mormal View Rieady e

Excel adjusts the height of a row to accommodate the largest font size in the row. You can also
explicitly specify the height of a row using the set row() worksheet method.

9.9 format.set_font_color()

set_font_color (color)
Set the color of the font used in the cell.

Parameters color (siring) — The cell font color.
Set the font color:
cell format = workbook.add format()

cell format.set font color('red')

worksheet.write(0, 0, 'Wheelbarrow', cell format)

9.8. format.set_font_size() 129

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.0.2

® @ | format_example.xlsx
Home Layout Tables | Charts SmartArt | 3 v &~
Ad 4D & (= fx| |~
T A WU NN 5N N T N——
1 (Wheelbarrow
2
. h||-|q e lih!!‘tlf |||
ormal View Ready 5

The color can be a Html style #RRGGBB string or a limited number of named colors, see Working
with Colors.

Note: The set font color() method is used to set the color of the font in a cell. To set the
color of a cell use the set bg color() and set pattern() methods.

9.10 format.set_bold()

set_bold()
Turn on bold for the format font.

Set the bold property of the font:

cell format.set bold()

®_® | format_example.xlsx
Home Layout Tables | Charts SmartArt | 3 v i~
E21 1] 0 & (= fx| v
J A [B8 [€ [D [ENSEN=
1 Bold Text
2
44 > w Sheetl | +
...... Mormal 'Uiaru.rl Rudl |” w

130 Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

9.11 format.set italic()

set_italic()
Turn on italic for the format font.

Set the italic property of the font:

cell format.set italic()

| format_example.xlsx
Home | Layout Tables | Charts | SmartArt | 3 v IF~
00 (- & v
W SN M SN O N — N E=

Ad
_J“
Italic Text

ﬂMI-l

14 4 » &l ih!!tl_ Il
| [+ | |

Mormal View Ready

9.12 format.set_underline()

set_underline()
Turn on underline for the format.

Parameters style (int) — Underline style.
Set the underline property of the format:

cell format.set underline()

9.11. format.set_italic() 131

https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.0.2

® @ | format_example.xlsx
Home Layout Tables | Charts SmartArt | 3 v &~
E21 10 & (= fx| K
J A | B [€ [D NENSEN-
1 | Underlined text
2
4 4 > » heetl
£ Nmmal'hl'ia‘wli n-u_l ! P

The available underline styles are:
+ 1 = Single underline (the default)
» 2 = Double underline
33 = Single accounting underline

* 34 = Double accounting underline

9.13 format.set_font_strikeout()

set_font_strikeout()
Set the strikeout property of the font.

®_® | format_example.xlsx
Home Layout Tables | Charts SmartArt | 3 v i~
8 10 ® (= f A
2 RRRSS URSTO S O WU o———— £ &
1 |StrikecutText
| 2
m— ERE RN S Sheetl
----- . "l sheets / + ST [i
ormal View Ready w

132 Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

9.14 format.set_font_script()

set_font_script()
Set the superscript/subscript property of the font.

The available options are:
* 1 = Superscript
+ 2 = Subscript

[SN format_example.xlsx
| # Home | Layout _ Tables | Charts | SmartArt | ¥ v -
A3 - fx -
] | B C D E
1 | Superscript™
2
1« = # | Sheet [+
Mormal View R.F_-an::i:,.‘rL)r o

This property is generally only useful when used in conjunction with write rich string().

9.15 format.set hum_format()

set_num_format (format_string)
Set the number format for a cell.

Parameters format_string (siring) — The cell number format.

This method is used to define the numerical format of a number in Excel. It controls whether a
number is displayed as an integer, a floating point number, a date, a currency value or some other
user defined format.

The numerical format of a cell can be specified by using a format string or an index to one of
Excel’s built-in formats:

cell formatl
cell format2

workbook.add format()
workbook.add format()

cell formatl.set num format('d mmm yyyy') # Format string.
cell format2.set num format(OxOF) # Format index.

Format strings can control any aspect of number formatting allowed by Excel:

9.14. format.set_font_script() 133

https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.0.2

cell formatOl.set num format('0.000")
worksheet.write(1l, 0, 3.1415926, cell format01l)

cell format@2.set num format('#,##0")
worksheet.write(2, 0, 1234.56, cell format02)

cell format@3.set num format('#,##0.00")
worksheet.write(3, 0, 1234.56, cell format03)

cell format@4.set num format('0.00")
worksheet.write(4, 0, 49.99, cell format04)

cell format05.set num format('mm/dd/yy")
worksheet.write(5, 0, 36892.521, cell format05)

cell format06.set num format('mmm d yyyy')
worksheet.write(6, 0, 36892.521, cell format06)

cell format@7.set num format('d mmmm yyyy')
worksheet.write(7, 0, 36892.521, cell format07)

-> 3.142

-> 1,235

-> 1,234.56

-> 49,99

-> 01/01/01

-> Jan 1 2001

-> 1 January 2001

cell format08.set num format('dd/mm/yyyy hh:mm AM/PM")

worksheet.write(8, 0, 36892.521, cell format08)

\Y

-> 01/01/2001 12:30 AM

cell format09.set num format('0 "dollar and" .00 "cents"')

worksheet.write(9, 0, 1.87, cell format09)

Conditional numerical formatting.

-> 1 dollar and .87 cents

cell formatl0.set num_ format('[Green]General;[Red]-General;General")

worksheet.write(10, 0, 123, cell formatl0) # >
worksheet.write(11, 0, -45, cell formatlQ) #
worksheet.write(12, 0, 0, cell formatlo) #

A

Zip code.
cell formatll.set num_ format('00000")
worksheet.write(13, 0, 1209, cell formatll)

0 Green
0 Red
0 Default color

134

Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

8 00 | number_formats.xlsx
Home | Layout | Tables | Charts | SmartArt | M| v ft-
All 10 @& (= fx| 123 v
B e e D L | — |

[

3.142

1,235

1,234.56

45.99

01/01/01

Jan 12001

1 January 2001

01/01/2001 12:30 PM

10 1 dollar and .87 cents
123]
45/

0]

fakBalalsl

FRFE— l Sh!!tl_ |||

Mormal View Rieady e

O 00|~ O W || |

The number system used for dates is described in Working with Dates and Time.
The color format should have one of the following values:

[Black] [Blue] [Cyan] [Green] [Magenta] [Red] [White] [Yellow]

For more information refer to the Microsoft documentation on cell formats.

For information on how to get a number format to show up as one of the number format categories
such as Currency, Accounting, Date, Time, Percentage, Fraction, Scientific or Text, see Number
Format Categories, above.

For backwards compatibility XlsxWriter also supports Excel’s built-in formats which are set via an
index number, rather than a string:

cell format.set num format(3) # Same as #, ##0

The format indexes and the equivalent strings are shown in the following table:

Index | Format String
0 General

1 0

2 0.00

3 #,##0

Continued on next page

9.15. format.set_num_format() 135

https://support.office.com/en-us/article/create-or-delete-a-custom-number-format-78f2a361-936b-4c03-8772-09fab54be7f4

Creating Excel files with Python and XisxWriter, Release 3.0.2

Table 9.2 — continued from previous page
Index | Format String
4 #,##0.00

5 ($#,##0_) ; ($#,##0)

6 ($#,##0) ; [Red] ($#,##0)
7 ($#,##0.00), ($#,##0.00)
8 ($#,##0.00) ; [Red] ($#,##0.00)
9 0%

10 0.00%

11 0.00E+00

12 # ?/7

13 # ?27/77

14 m/d/yy

15 d-mmm-yy

16 d - mmm

17 mmm-yy

18 h:mm AM/PM

19 h:mm:ss AM/PM
20 h:mm

21 h:mm:ss

22 m/d/yy h:mm

37 (#,##0) ; (#,##0)
(#,##0) ; [Red] (#,##0)
39 (#,##0.00), (#,##0.00)
40 (#,##0.00); [Red] (#,##0.00)

41 (R #HHO) (F (#,#H#0);_(* "-"), (@)

42 (%% #,##0) ($* (#,##0);_($* "-"_); (@)

43 C(* #,##0.00),; (* (#,##0.00); (* "-"??7), (@)
44 (S #,##0.00); ($* (#,##0.00); ($* "-"??7), (@)
45 mm:ss

46 [h]:mm:ss
47 mm:ss.0
48 ##0.0E+0
49 @

Numeric formats 23 to 36 are not documented by Microsoft and may differ in international versions.
The listed date and currency formats may also vary depending on system settings.

The dollar sign in the above format usually appears as the defined local currency symbol. To get
more locale specific formatting see see Number Format Categories, above.

9.16 format.set_locked()

set_locked (state)
Set the cell locked state.

136 Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

Parameters state (bool) — Turn cell locking on or off. Defaults to True.

This property can be used to prevent modification of a cell’s contents. Following Excel’s conven-
tion, cell locking is turned on by default. However, it only has an effect if the worksheet has been
protected using the worksheet protect () method:

locked = workbook.add format()
locked.set locked(True)

unlocked = workbook.add format()
unlocked.set locked(False)

worksheet.protect()
worksheet.write('Al', '=1+2', locked)

worksheet.write('A2', '=1+2', unlocked)

9.17 format.set_hidden()

set_hidden()
Hide formulas in a cell.

This property is used to hide a formula while still displaying its result. This is generally used to hide
complex calculations from end users who are only interested in the result. It only has an effect if
the worksheet has been protected using the worksheet protect () method:

hidden = workbook.add format()
hidden.set hidden()

worksheet.protect()

worksheet.write('Al', '=1+2', hidden)

9.18 format.set_align()

set_align(alignment)
Set the alignment for data in the cell.

Parameters alignment (siring) — The vertical and or horizontal alignment direc-
tion.

This method is used to set the horizontal and vertical text alignment within a cell. The following
are the available horizontal alignments:

9.17. format.set_hidden() 137

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.0.2

Horizontal alignment
left

center

right

fill

justify

center_across
distributed

The following are the available vertical alignments:

Vertical alignment
top

vcenter

bottom

vjustify
vdistributed

As in Excel, vertical and horizontal alignments can be combined:

cell format = workbook.add format()

cell format.set align('center"')
cell format.set align('vcenter"')

worksheet.set row(0, 70)
worksheet.set column('A:A', 30)

worksheet.write(0, 0, 'Some Text', cell format)

138 Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

[] & [format_example.xlsx
i # Home | Layout Tables | Charts | SmartArt | » v -
A34 = Sfx -
| A e e e L)
Some Text

44 FF IShEtllJ"‘;‘

Mormal View Rieady o

En‘m‘w|m‘m‘a‘w|m‘u

Text can be aligned across two or more adjacent cells using the 'center _across’ property.
However, for genuine merged cells it is better to use the merge range () worksheet method.

The "vjustify’ (vertical justify) option can be used to provide automatic text wrapping in a cell.
The height of the cell will be adjusted to accommodate the wrapped text. To specify where the text
wraps use the set text wrap() method.

9.19 format.set_center_across()

set_center_across()
Center text across adjacent cells.

Text can be aligned across two or more adjacent cells using the set center across() method.
This is an alias for the set_align(’center_across’) method call.

Only the leftmost cell should contain the text. The other cells in the range should be blank but
should include the formatting:

cell format = workbook.add format()
cell format.set center across()

9.19. format.set_center_across() 139

Creating Excel files with Python and XisxWriter, Release 3.0.2

worksheet.write(1l, 1, 'Center across selection', cell format)
worksheet.write blank(1l, 2, '', cell format)

For actual merged cells it is better to use the merge range () worksheet method.

9.20 format.set_text_wrap()

set_text_wrap()
Wrap text in a cell.

Turn text wrapping on for text in a cell:

cell format = workbook.add format()
cell format.set text wrap()

worksheet.write(0, 0, "Some long text to wrap in a cell", cell format)

If you wish to control where the text is wrapped you can add newline characters to the string:

worksheet.write(2, 0, "It's\na bum\nwrap", cell format)

| NON [% format_example.xlsx
| # Home | Layout | Tables | Charts | SmartArt | 3| v i~
A34 1 0 & (- & E
. B | ¢ | b [E [F | [=
Some long
text to
wrapina
cell

P | =2

It's
a bum
wrap

Y l Sh!!tl_ [

Mormal View Ready s

fEl |~ || & w

=)
=)

140 Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

Excel will adjust the height of the row to accommodate the wrapped text, as shown in the image
above. This can be useful but it can also have unwanted side-effects:

* Objects such as images or charts that cross the automatically adjusted cells will not be
scaled correctly. See Object scaling due to automatic row height adjustment.

* You may not want the row height to change. In that case you should set the row height to a
non-default value such as 15.001.

9.21 format.set_rotation()

set_rotation(angle)
Set the rotation of the text in a cell.

Parameters angle (int) — Rotation angle in the range -90 to 90 and 270.
Set the rotation of the text in a cell. The rotation can be any angle in the range -90 to 90 degrees:

cell format = workbook.add format()
cell format.set rotation(30)

worksheet.write(0, 0, 'This text is rotated', cell format)

o ® [7 format_example.xlsx
| # Home | Layout | Tables | Charts | SmartArt | »| v -
A34 Ao fx| |»]
fTo..] B | € [b | E | F |[=
b
ﬁ‘ﬁ?
e
s
1
2 |
| 3 |
4 |
S |
6 |
a
8 |
9
1h
<< =+ B 5h [+]
eetl |||

Mormal View Ready A

9.21. format.set_rotation() 141

https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.0.2

The angle 270 is also supported. This indicates text where the letters run from top to bottom.

9.22 format.set_reading_order()

set_reading_order (direction)
Set the reading order for the text in a cell.

Parameters direction (int) — Reading order direction.

Set the text reading direction. This is useful when creating Arabic, Hebrew or other near or far east-
ern worksheets. It can be used in conjunction with the Worksheet right to left() method to
also change the direction of the worksheet.

Home Insert Draw Page Layout = Share [J1 Comments

N8 . frx v
E D C B A

English text / 4= =3 1
e pal f English text. 2
English text / 4,& a5 3

4

W 0o =] o wn

+ Sheet2 Sheetl
HH b - + 125%

9.23 format.set_indent()

set_indent (/evel)
Set the cell text indentation level.

Parameters level (int) — Indentation level.

142 Chapter 9. The Format Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.0.2

This method can be used to indent text in a cell. The argument, which should be an integer, is
taken as the level of indentation:

workbook.add format(

cell formatl)
workbook.add format()

cell format2

cell formatl.set indent(1)
cell format2.set indent(2)

worksheet.write('Al', 'This text is indented 1 level', cell formatl)
worksheet.write('A2', 'This text is indented 2 levels', cell format2)

800 ™ text_indent.xlsx
Home | Layout | Tables | Charts | SmartArt | b5 I -
A30 (06 (- fx |~
] . B | Ccl=
1 This text is indented 1 level
2 This text is indented 2 levels
3
4
3
b
i
B
9
10
11
12
13
e e — :
¥ e

Indentation is a horizontal alignment property. It will override any other horizontal properties but it
can be used in conjunction with vertical properties.

9.24 format.set_shrink()

set_shrink()
Turn on the text “shrink to fit” for a cell.

This method can be used to shrink text so that it fits in a cell:

9.24. format.set_shrink() 143

Creating Excel files with Python and XisxWriter, Release 3.0.2

cell format = workbook.add format()
cell format.set shrink()

worksheet.write(0, 0, 'Honey, I shrunk the text!', cell format)

9.25 format.set_text_justlast()

set_text_justlast()
Turn on the justify last text property.

Only applies to Far Eastern versions of Excel.

9.26 format.set_pattern()

set_pattern(index)
Parameters index (inf) — Pattern index. 0 - 18.
Set the background pattern of a cell.

The most common pattern is 1 which is a solid fill of the background color.

9.27 format.set_bg_color()

set_bg _color(color)
Set the color of the background pattern in a cell.

Parameters color (string) — The cell font color.

The set bg color() method can be used to set the background color of a pattern. Patterns are
defined via the set pattern() method. If a pattern hasn’t been defined then a solid fill pattern
is used as the default.

Here is an example of how to set up a solid fill in a cell:

cell format = workbook.add format()

cell format.set pattern(l) # This is optional when using a solid fill.
cell format.set bg color('green')

worksheet.write('Al', 'Ray', cell format)

144 Chapter 9. The Format Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XlsxWriter, Release 3.0.2

8 00 | set_bg_color.xlsx
Home | Layout | Tables | Charts | SmartArt | b5 I -

B7 0@ (- & |v
e e B e e P e e | = |

Mormal View Ready A

The color can be a Html style #RRGGBB string or a limited number of named colors, see Working
with Colors.

9.28 format.set_fg_color()

set_fg_color(color)
Set the color of the foreground pattern in a cell.

Parameters color (siring) — The cell font color.
The set fg color() method can be used to set the foreground color of a pattern.

The color can be a Html style #RRGGBB string or a limited number of named colors, see Working
with Colors.

9.29 format.set_border()

set_border (style)
Set the cell border style.

Parameters style (/nt) — Border style index. Default is 1.

Individual border elements can be configured using the following methods with the same parame-
ters:

set bottom()

set top()
set left()

set right()

9.28. format.set_fg_color() 145

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.0.2

A cell border is comprised of a border on the bottom, top, left and right. These can be set to the
same value using set border () orindividually using the relevant method calls shown above.

The following shows the border styles sorted by XlsxWriter index number:

Index | Name Weight | Style

0 None 0

1 Continuous | B

2 Continuous L

3 Dash 1 S

4 Dot 1

5 Continuous K

6 Double 3 ===========

7 Continuous O R

8 Dash 2 S

9 Dash Dot 1 - - -

10 Dash Dot 2 - - -

11 Dash Dot Dot | 1 - -

12 Dash Dot Dot | 2 - - .

13 SlantDash Dot | 2 / - . / -

The following shows the borders in the order shown in the Excel Dialog:
Index | Style Index | Style

0 None 12 S
7 | e 13 / - . /- .
4« . .]10 - .- -
11 - .. 8 - - - - - -
9 S T T 2 | e
3 - - - - - - I e
| B 6 ===========

9.30 format.set_bottom()

set_bottom(style)
Set the cell bottom border style.

Parameters style (int) — Border style index. Default is 1.

Set the cell bottom border style. See set border () for details on the border styles.

9.31 format.set_top()

set_top(style)
Set the cell top border style.

Parameters style (/nt) — Border style index. Default is 1.

Set the cell top border style. See set border() for details on the border styles.

146 Chapter 9. The Format Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.0.2

9.32 format.set_left()

set_left(style)
Set the cell left border style.

Parameters style (int) — Border style index. Default is 1.

Set the cell left border style. See set border () for details on the border styles.

9.33 format.set_right()

set_right (style)
Set the cell right border style.

Parameters style (int) — Border style index. Default is 1.

Set the cell right border style. See set border () for details on the border styles.

9.34 format.set_border_color()

set_border_color(color)
Set the color of the cell border.

Parameters color (siring) — The cell border color.

Individual border elements can be configured using the following methods with the same parame-
ters:

» set bottom color()
« set top color()

» set left color()

« set right color()

Set the color of the cell borders. A cell border is comprised of a border on the bottom, top, left and
right. These can be set to the same color using set border color() orindividually using the
relevant method calls shown above.

The color can be a Html style #RRGGBB string or a limited number of named colors, see Working
with Colors.

9.35 format.set_bottom_color()

set_bottom_color(color)
Set the color of the bottom cell border.

Parameters color (siring) — The cell border color.

9.32. format.set_left() 147

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.0.2

See set border color() for details on the border colors.

9.36 format.set_top_color()

set_top_color(color)
Set the color of the top cell border.

Parameters color (siring) — The cell border color.

See set border color() for details on the border colors.

9.37 format.set_left_color()

set_left_color(color)
Set the color of the left cell border.

Parameters color (siring) — The cell border color.

See set border color() for details on the border colors.

9.38 format.set_right_color()

set_right_color(color)
Set the color of the right cell border.

Parameters color (siring) — The cell border color.

See set border color() for details on the border colors.

9.39 format.set_diag_border()

set_diag_border (style)
Set the diagonal cell border style.

Parameters style (/nt) — Border style index. Default is 1.

Set the style for a diagonal border. The style is the same as those used in set border().

See Example: Diagonal borders in cells.

148

Chapter 9. The Format Class

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.0.2

oC® [% diag_border.xlsx
l #A Home | Layout | Tables | Charts | SmartArt | »| v L~
A22 (0 & (= fx E

T A TR N =IO N ; VU NN R—— -
Text—"
Text—__

Teg_"_

Text—<—"
R B [

Mormal View Ready S

9.40 format.set_diag_type()

set_diag_type (style)
Set the diagonal cell border type.

Parameters style (/nf) — Border type, 1-3. No default.
Set the type of the diagonal border. The style should be one of the following values:
1. From bottom left to top right.
2. From top left to bottom right.

3. Same as type 1 and 2 combined.

9.41 format.set_diag_color()

set_diag_color(color)
Set the color of the diagonal cell border.

Parameters color (siring) — The cell border color.

9.40. format.set_diag_type() 149

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.0.2

See set border color() for details on the border colors.

150 Chapter 9. The Format Class

CHAPTER
TEN

THE CHART CLASS

The Chart module is a base class for modules that implement charts in XisxWriter. The informa-
tion in this section is applicable to all of the available chart subclasses, such as Area, Bar, Column,
Doughnut, Line, Pie, Scatter, Stock and Radar.

A chart object is created via the Workbook add chart () method where the chart type is speci-
fied:

chart = workbook.add chart({'type': 'column'})

Itis then inserted into a worksheet as an embedded chart using the insert chart() Worksheet
method:

worksheet.insert chart('A7', chart)

Or it can be set in a chartsheet using the set chart () Chartsheet method:

chartsheet = workbook.add chartsheet()
...
chartsheet.set chart(chart)

The following is a small working example or adding an embedded chart:

import xlsxwriter

workbook = xlsxwriter.Workbook('chart.xlsx")
worksheet = workbook.add worksheet()

Create a new Chart object.
chart = workbook.add chart({'type': 'column'})

Write some data to add to plot on the chart.
data = [

[1, 2, 3, 4, 5],

[2, 4, 6, 8, 10],

[3, 6, 9, 12, 15],
]

worksheet.write column('Al', datal0])
worksheet.write column('B1l', data[l])
worksheet.write column('Cl', data[2])

151

Creating Excel files with Python and XisxWriter, Release 3.0.2

Configure the chart. In simplest case we add one or more data series.

chart.add series({'values': '=Sheetl!A1:A5'})
chart.add series({'values': '=Sheetl!B1:B5'})
chart.add series({'values': '=Sheetl!C1:C5'})

Insert the chart into the worksheet.
worksheet.insert chart('A7', chart)

workbook.close()

16

14

12

10 M Series1

B Series2

W Series3

The supported chart types are:
» area: Creates an Area (filled line) style chart.
» bar: Creates a Bar style (transposed histogram) chart.
« column: Creates a column style (histogram) chart.
» line: Creates a Line style chart.
» pie: Creates a Pie style chart.
« doughnut: Creates a Doughnut style chart.
» scatter: Creates a Scatter style chart.
» stock: Creates a Stock style chart.
« radar: Creates a Radar style chart.
Chart subtypes are also supported for some chart types:

workbook.add chart({'type': 'bar', 'subtype': 'stacked'})

The available subtypes are:

area
stacked
percent stacked

152 Chapter 10. The Chart Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

bar
stacked
percent_stacked

column
stacked
percent stacked

scatter
straight with markers
straight
smooth with markers
smooth

line
stacked
percent stacked

radar
with markers
filled

Methods that are common to all chart types are documented below. See Working with Charts for
chart specific information.

10.1 chart.add_series()

add_series (options)
Add a data series to a chart.

Parameters options (dict) — A dictionary of chart series options.

In Excel a chart series is a collection of information that defines which data is plotted such as
values, axis labels and formatting

For an XlsxWriter chart object the add series() method is used to set the properties for a
series:

chart.add series({

'categories': '=Sheetl!A1:$A%$5',
'values': '=Sheetl1!B1:B5"',
'line': {'color': 'red'},

}

Or using a list of values instead of category/value formulas:
[sheetname, first row, first col, last row, last col]
chart.add series({

‘categories': ['Sheetl', 0, 0, 4, 0],
'values': ['Sheetl', 0, 1, 4, 1],
‘line': {'color': 'red'},

}

10.1. chart.add_series() 153

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.0.2

As shown above the categories and values can take either a range formula such as
=Sheetl!A2:A7 or, more usefully when generating the range programmatically, a list with
zero indexed row/column values.

The series options that can be set are:

values: This is the most important property of a series and is the only mandatory option for
every chart object. This option links the chart with the worksheet data that it displays. The
data range can be set using a formula as shown in the first example above or using a list of
values as shown in the second example.

categories: This sets the chart category labels. The category is more or less the same
as the X axis. In most chart types the categories property is optional and the chart will
just assume a sequential series from 1. .n.

name: Set the name for the series. The name is displayed in the formula bar. For non-
Pie/Doughnut charts it is also displayed in the legend. The name property is optional and
if it isn’t supplied it will default to Series 1..n. The name can also be a formula such as
=Sheetl!A1 or a list with a sheetname, row and column such as ['Sheetl’, 0, 0].

line: Set the properties of the series line type such as color and width. See Chart format-
ting: Line.

border: Set the border properties of the series such as color and style. See Chart format-
ting: Border.

fill: Set the solid fill properties of the series such as color. See Chart formatting: Solid
Fill.

pattern: Set the pattern fill properties of the series. See Chart formatting: Pattern Fill.
gradient: Set the gradient fill properties of the series. See Chart formatting: Gradient Fill.

marker: Set the properties of the series marker such as style and color. See Chart series
option: Marker.

trendline: Set the properties of the series trendline such as linear, polynomial and moving
average types. See Chart series option: Trendline.

smooth: Set the smooth property of a line series.

y error_bars: Set vertical error bounds for a chart series. See Chart series option: Error
Bars.

x_error_bars: Set horizontal error bounds for a chart series. See Chart series option:
Error Bars.

data labels: Set data labels for the series. See Chart series option: Data Labels.
points: Set properties for individual points in a series. See Chart series option: Points.

invert if negative: Invert the fill color for negative values. Usually only applicable to
column and bar charts.

overlap: Set the overlap between series in a Bar/Column chart. The range is +/- 100. The
default is 0:

154

Chapter 10. The Chart Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

chart.add series({

‘categories': '=Sheetl!A1:$A%$5',
'values': '=Sheetl!B1:B5"',
'overlap': 10,

}

Note, it is only necessary to apply the overlap property to one series in the chart.

» gap: Set the gap between series in a Bar/Column chart. The range is 0 to 500. The default

is 150:
chart.add series({
‘categories': '=Sheetl!A1:$A%$5",
'values': '=Sheetl!B1:B5"',
‘gap': 200,

}

Note, it is only necessary to apply the gap property to one series in the chart.

More than one series can be added to a chart. In fact, some chart types such as stock require
it. The series numbering and order in the Excel chart will be the same as the order in which they
are added in XlsxWriter.

It is also possible to specify non-contiguous ranges:

chart.add series({
‘categories': '=(Sheetl!A1:A9,Sheetl!A14:A25)",
'values': '=(Sheetl!B1:$B%$9,Sheetl!B14:$B%$25) "',
})

10.2 chart.set_x_axis()

set_x_axis (options)
Set the chart X axis options.

Parameters options (dict) — A dictionary of axis options.
The set _x_axis () method is used to set properties of the X axis:

chart.set x axis({

'name': 'Earnings per Quarter',
‘name_font': {'size': 14, 'bold': True},
‘num font': {'italic': True },

}

10.2. chart.set x_axis() 155

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.0.2

16

14

12

o N B~ O
! !

1 2 3 4
Earnings per Quarter

B Series1
B Series2

W Series3

The options that can be set are:

name
name_font
name_layout

num font
num_format

line

fill

pattern
gradient

min

max

minor_unit
major_unit
interval unit
interval tick
crossing
position_axis
reverse

log base

label position
label align
major _gridlines
minor_gridlines
visible

date axis

text axis
minor_unit type
major _unit type
minor_tick mark
major_tick mark
display units
display units visible

These options are explained below. Some properties are only applicable to value, category or

156

Chapter 10. The Chart Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

date axes (this is noted in each case). See Chart Value and Category Axes for an explanation of
Excel’s distinction between the axis types.

* name: Set the name (also known as title or caption) for the axis. The name is displayed
below the X axis. (Applicable to category, date and value axes.):

chart.set x axis({'name': 'Earnings per Quarter'})

This property is optional. The default is to have no axis name.

The name can also be a formula such as =Sheet1!$A%$1 or a list with a sheetname, row
and column such as ['Sheetl’, 0, 0].

« name_font: Set the font properties for the axis name. (Applicable to category, date and
value axes.):

chart.set x axis({'name font': {'bold': True, 'italic': True}})

See the Chart Fonts section for more details on font properties.

» name_layout: Set the (x, y) position of the axis caption in chart relative units. (Applica-
ble to category, date and value axes.):

chart.set x axis({

'name': 'X axis',

'name_layout': {
'x': 0.34,
'y': 0.85,

}

See the Chart Layout section for more details.

« num_font: Set the font properties for the axis numbers. (Applicable to category, date and
value axes.):

chart.set x axis({'name font': {'bold': True, 'italic': True}})

See the Chart Fonts section for more details on font properties.

« num_format: Set the number format for the axis. (Applicable to category, date and value
axes.):

chart.set x axis({'num format': '#,##0.00'})
chart.set y axis({'num format': '0.00%'})

The number format is similar to the Worksheet Cell Format num_format apart from the fact
that a format index cannot be used. An explicit format string must be used as shown above.
See set num format() for more information.

« line: Set the properties of the axis line type such as color and width. See Chart formatting:
Line:

chart.set x axis({'line': {'none': True}})

10.2. chart.set x_axis() 157

Creating Excel files with Python and XisxWriter, Release 3.0.2

fill: Set the solid fill properties of the axis such as color. See Chart formatting: Solid Fill.
Note, in Excel the axis fill is applied to the area of the numbers of the axis and not to the
area of the axis bounding box. That background is set from the chartarea fill.

pattern: Set the pattern fill properties of the axis. See Chart formatting: Pattern Fill.
gradient: Set the gradient fill properties of the axis. See Chart formatting: Gradient Fill.
min: Set the minimum value for the axis range. (Applicable to value and date axes only.):

chart.set x axis({'min': 3, 'max': 6})

80

70

60
o /\
40 \

30
20 \i
10

T T T
3 35 4 4.5 5 5.5 6

max: Set the maximum value for the axis range. (Applicable to value and date axes only.)

minor unit: Set the increment of the minor units in the axis range. (Applicable to value
and date axes only.):

chart.set x axis({'minor unit': 0.4, 'major unit': 2})
major unit: Set the increment of the major units in the axis range. (Applicable to value
and date axes only.)

interval unit: Set the interval unit for a category axis. Should be an integer value.
(Applicable to category axes only.):

chart.set x axis({'interval unit': 5})

interval tick: Set the tick interval for a category axis. Should be an integer value.
(Applicable to category axes only.):

chart.set x axis({'interval tick': 2})

crossing: Set the position where the y axis will cross the x axis. (Applicable to all axes.)

The crossing value can be a numeric value or the strings "max’ or 'min’ to set the
crossing at the maximum/minimum axis:

158

Chapter 10. The Chart Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

chart.set x axis({'crossing': 3})
chart.set y axis({'crossing': 'max'})

For category axes the numeric value must be an integer to represent the category num-
ber that the axis crosses at. For value and date axes it can have any value associated with
the axis. See also Chart Value and Category Axes.

If crossing is omitted (the default) the crossing will be set automatically by Excel based on
the chart data.

« position axis: Position the axis on or between the axis tick marks. (Applicable to cate-
gory axes only.)

There are two allowable values on_tick and between:
chart.set x axis({'position axis': 'on tick'})
chart.set x axis({'position axis': ‘'between'})

* reverse: Reverse the order of the axis categories or values. (Applicable to category, date

and value axes.):

chart.set x axis({'reverse': True})

16
14
12

10
¥ Seriesl

8 B Series2
6 Series3
4
L | "1
T T T T 0
5 4 3 2 1

» log base: Set the log base of the axis range. (Applicable to value axes only.):

chart.set y axis({'log base': 10})

« label position: Set the “Axis labels” position for the axis. The following positions are
available:

next to (the default)
high
low
none

For example:

10.2. chart.set x_axis() 159

Creating Excel files with Python and XisxWriter, Release 3.0.2

chart.set x axis({'label position': 'high'})
chart.set y axis({'label position': 'low'})
» label align: Align the “Axis labels” the axis. (Applicable to category axes only.)

The following Excel alignments are available:

center (the default)
right
left

For example:

chart.set x axis({'label align': 'left'})

« major _gridlines: Configure the major gridlines for the axis. The available properties are:

visible
line

For example:

chart.set x axis({
'major gridlines': {
'visible': True,
'line': {'width': 1.25, 'dash type': 'dash'}
b
})

16 7

14

12

10 7 M Series1

M Series2

Series3

T
I
+
I
|
I
I
T
I
+
I
1
I
I
T
I
+
I
1

Lol ol

1 2 3 4 5

The visible property is usually on for the X axis but it depends on the type of chart.

The line property sets the gridline properties such as color and width. See Chart Format-
ting.

* minor_gridlines: This takes the same options as major_gridlines above.
The minor gridline visible property is off by default for all chart types.

» visible: Configure the visibility of the axis:

160 Chapter 10. The Chart Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

chart.set y axis({'visible': False})

Axes are visible by default.

» date _axis: This option is used to treat a category axis with date or time data as a Date
Axis. (Applicable to date category axes only.):

chart.set x axis({'date axis': True})

This option also allows you to set max and min values for a category axis which isn’t allowed
by Excel for non-date category axes.

See Date Category Axes for more details.

« text axis: This option is used to treat a category axis explicitly as a Text Axis. (Applicable
to category axes only.):

chart.set x axis({'text axis': True})

 minor _unit type: For date axis axes, see above, this option is used to set the type of
the minor units. (Applicable to date category axes only.):

chart.set x axis({
'date _axis': True,
‘minor unit': 4,
‘minor _unit type': 'months’,

}

e major unit type: Same as minor unit type, see above, but for major axes unit
types.

« minor_ tick mark: Setthe axis minor tick mark type/position to one of the following values:

none
inside
outside
Cross (inside and outside)

For example:

chart.set x axis({'major tick mark': 'none',
'minor tick mark': 'inside'})

« major_tick mark: Same asminor_ tick mark, see above, but for major axes ticks.

» display units: Set the display units for the axis. This can be useful if the axis numbers
are very large but you don’t want to represent them in scientific notation. The available
display units are:

hundreds
thousands

ten thousands
hundred_thousands
millions

10.2. chart.set x_axis() 161

Creating Excel files with Python and XisxWriter, Release 3.0.2

ten millions
hundred millions
billions
trillions

Applicable to value axes only.:

chart.set x axis({'display units': ‘thousands'})
chart.set y axis({'display units': 'millions'})

w
w

Millions
w
o
>’

™N

; /
7

10 &

T T T T T)
0 1 2 3 4 5 6
Thousands

« display units visible: Control the visibility of the display units turned on by the pre-
vious option. This option is on by default. (Applicable to value axes only.):

chart.set x axis({'display units': 'hundreds"',
'display units visible': False})

10.3 chart.set_y axis()

set_y_axis (options)
Set the chart Y axis options.

Parameters options (dict) — A dictionary of axis options.
The set_y axis() method is used to set properties of the Y axis.

The properties that can be set are the same as for set X axis, see above.

10.4 chart.set_x2 axis()

set_x2_axis (options)
Set the chart secondary X axis options.

Parameters options (dict) — A dictionary of axis options.

162 Chapter 10. The Chart Class

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.0.2

The set x2 axis() method is used to set properties of the secondary X axis, see
chart secondary axes().

The properties that can be set are the same as for set X axis, see above.

The default properties for this axis are:

‘label position': 'none',
'crossing': "max',
'visible': False,

10.5 chart.set_y2 axis()

set_y2_axis (options)
Set the chart secondary Y axis options.

Parameters options (dict) — A dictionary of axis options.

The set y2 axis() method is used to set properties of the secondary Y axis, see
chart secondary axes().

The properties that can be set are the same as for set _x_axis, see above.
The default properties for this axis are:

'major gridlines': {'visible': True}

10.6 chart.combine()

combine (chart)
Combine two charts of different types.

Parameters chart — A chart object created with add chart().

The chart combine () method is used to combine two charts of different types, for example a
column and line chart:

column chart = workbook.add chart({'type': 'column'})
column_chart.add series({...})

line chart = workbook.add chart({'type': 'line'})
line chart.add series({...})

column_chart.combine(line chart)

10.5. chart.set_y2_axis() 163

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.0.2

Combined chart - same Y axis

80
3 70 /‘\
E 60
= 0 / \
?40 / e~
% 20 / == Batch 1
g 20 l =—Batch 2
410

o I , | H B

2 3 4 5 6 7

Test number

See the Combined Charts section for more details.

10.7 chart.set_size()

The set size() method is used to set the dimensions of the chart. The size properties that can
be set are:

width
height
Xx_scale
y scale
x _offset
y offset

The width and height are in pixels. The default chart width x height is 480 x 288 pixels. The
size of the chart can be modified by setting the width and height or by setting the x scale
andy scale:

chart.set size({'width': 720, 'height': 576})
Same as:
chart.set size({'x scale': 1.5, 'y scale': 2})

The x_offset andy offset position the top left corner of the chart in the cell that it is inserted
into.

Note: the x offset and y offset parameters can also be set via the insert chart()
method:

worksheet.insert chart('E2', chart, {'x offset': 25, 'y offset': 10})

164 Chapter 10. The Chart Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

10.8 chart.set_title()

set_title(options)
Set the chart title options.

Parameters options (dict) — A dictionary of chart size options.
The set title() method is used to set properties of the chart title:

chart.set _title({'name': 'Year End Results'})

Year End Results |

e =
o N B O

B Series1

. B Series2

| I Series3
1 2 3 4 5

The properties that can be set are:

o N B O

* name: Set the name (title) for the chart. The name is displayed above the chart. The name
can also be a formula such as =Sheet1!A1 or a list with a sheetname, row and column
such as ['Sheetl’, 0, 0]. The name property is optional. The default is to have no
chart title.

« name_font: Set the font properties for the chart title. See Chart Fonts.

- overlay: Allow the title to be overlaid on the chart. Generally used with the layout property
below.

« layout: Setthe (x, y) position of the title in chart relative units:

chart.set title({

'name': 'Title’,
‘overlay': True,
'layout': {
'x': 0.42,
'y': 0.14,
}

}

See the Chart Layout section for more details.

10.8. chart.set_title() 165

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.0.2

» none: By default Excel adds an automatic chart title to charts with a single series and a user
defined series name. The none option turns this default title off. It also turns off all other
set title() options:

chart.set title({'none': True})

10.9 chart.set_legend()

set_legend (options)
Set the chart legend options.

Parameters options (dict) — A dictionary of chart legend options.

The set legend() method is used to set properties of the chart legend. For example it can be
used to turn off the default chart legend:

chart.set legend({'none': True})

16 7
14
12

11111

The options that can be set are:

a

=~

8]

none
position

font

border

fill

pattern
gradient
delete series
layout

* none: In Excel chart legends are on by default. The none option turns off the chart legend:

chart.set legend({'none': True})

166 Chapter 10. The Chart Class

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.0.2

For backward compatibility, it is also possible to turn off the legend via the position prop-
erty:

chart.set legend({'position': 'none'})

» position: Set the position of the chart legend:

chart.set legend({'position': 'bottom'})

16 7
14
12

1 2 3 4 5

M Series1 MSeries2 Series3

o N &~ O 00

The default legend position is right. The available positions are:

top

bottom

left

right

overlay left
overlay right
none

« font: Set the font properties of the chart legend:

chart.set legend({'font': {'size': 9, 'bold': True}})

See the Chart Fonts section for more details on font properties.

» border: Set the border properties of the legend such as color and style. See Chart format-
ting: Border.

« fill: Set the solid fill properties of the legend such as color. See Chart formatting: Solid
Fill.

« pattern: Set the pattern fill properties of the legend. See Chart formatting: Pattern Fill.
» gradient: Set the gradient fill properties of the legend. See Chart formatting: Gradient Fill.

» delete series: This allows you to remove one or more series from the legend (the series
will still display on the chart). This property takes a list as an argument and the series are
zero indexed:

10.9. chart.set_legend() 167

Creating Excel files with Python and XisxWriter, Release 3.0.2

Delete/hide series index 0 and 2 from the legend.
chart.set legend({'delete series': [0, 21})

16

14

12

10

B Series2

« layout: Setthe (x, y) position of the legend in chart relative units:

chart.set legend({

'"layout': {
"X': 0.80,
'y': 0.37,

'width': 0.12,
'height': 0.25,

}

See the Chart Layout section for more details.

10.10 chart.set_chartarea()

set_chartarea (options)
Set the chart area options.

Parameters options (dict) — A dictionary of chart area options.

The set chartarea() method is used to set the properties of the chart area. In Excel the chart
area is the background area behind the chart:

chart.set chartarea({
'border': {'none': True},
Fill': {'color': 'red'}
})

168 Chapter 10. The Chart Class

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.0.2

The properties that can be set are:

* border: Set the border properties of the chartarea such as color and style. See Chart
formatting: Border.

« fill: Set the solid fill properties of the chartarea such as color. See Chart formatting: Solid
Fill.

» pattern: Set the pattern fill properties of the chartarea. See Chart formatting: Pattern Fill.

« gradient: Set the gradient fill properties of the chartarea. See Chart formatting: Gradient
Fill.

10.11 chart.set_plotarea()

set_plotarea(options)
Set the plot area options.

Parameters options (dict) — A dictionary of plot area options.

The set plotarea() method is used to set properties of the plot area of a chart. In Excel the
plot area is the area between the axes on which the chart series are plotted:

chart.set plotarea({
'border': {'color': 'red', 'width': 2, 'dash type': ‘'dash'},
Fill': {'color': '#FFFFC2'}

})

10.11. chart.set_plotarea() 169

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.0.2

16 e — -

14 7

12

10 B Series1

B Series2

Series3

CF_::"_i_____
P

e
.P

The properties that can be set are:

* border: Set the border properties of the plotarea such as color and style. See Chart
formatting: Border.

fill: Set the solid fill properties of the plotarea such as color. See Chart formatting: Solid
Fill.

pattern: Set the pattern fill properties of the plotarea. See Chart formatting: Pattern Fill.

« gradient: Set the gradient fill properties of the plotarea. See Chart formatting: Gradient
Fill.

« layout: Setthe (x, y) position of the plotarea in chart relative units:

chart.set plotarea({

"layout': {
X' 0.13,
'y' 0.26,

'‘width': 0.73,
‘height': 0.57,

}

See the Chart Layout section for more details.

10.12 chart.set_style()

set_style(style id)
Set the chart style type.

Parameters style_id (int) — An index representing the chart style.

The set style() method is used to set the style of the chart to one of the 48 built-in styles
available on the ‘Design’ tab in Excel:

170 Chapter 10. The Chart Class

https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.0.2

chart.set style(37)

16 T
14
12 1 —

107 — B Seriesl

HSeries2

O Series3

Tl

1 2 3 4 5

The style index number is counted from 1 on the top left. The default style is 2.

Note: In Excel 2013 the Styles section of the ‘Design’ tab in Excel shows what were referred to as
‘Layouts’ in previous versions of Excel. These layouts are not defined in the file format. They are

a collection of modifications to the base chart type. They can be replicated using the XlsxWriter
Chart API but they cannot be defined by the set style() method.

10.13 chart.set_table()

set_table(options)
Set properties for an axis data table.

Parameters options (dict) — A dictionary of axis table options.

The set table() method adds a data table below the horizontal axis with the data used to plot
the chart:

chart.set table()

10.13. chart.set_table() 171

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.0.2

16
14
12

8
B Series1
6
a4 ‘ B Series2
’ ‘ '
Series3
2 ol
| 1 2 3 4 | s
Series1 1 2 3 4 5
Series2 2 4 6 10
Series3 3 6 9 12 15

The available options, with default values are:

'horizontal': True # Display vertical lines in the table.

'vertical': True # Display horizontal lines in the table.
'outline': True # Display an outline in the table.
'show keys': False # Show the legend keys with the table data.
'font': {} # Standard chart font properties.

For example:

chart.set table({'show keys': True})

The data table can only be shown with Bar, Column, Line, Area and stock charts. See the Chart
Fonts section for more details on font properties.

10.14 chart.set_up_down_bars()

set_up_down_bars (options)
Set properties for the chart up-down bars.

Parameters options (dict) — A dictionary of options.

The set_up down_bars () method adds Up-Down bars to Line charts to indicate the difference
between the first and last data series:

chart.set up down bars()

It is possible to format the up and down bars to add fill, pattern or gradient and border
properties if required. See Chart Formatting:

chart.set up down bars({
Iupl: {
fill': {'color': '#00B050'},
'border': {'color': 'black'}

172 Chapter 10. The Chart Class

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.0.2

}
"down': {
Fill': {'color': 'red'},
'border': {'color': 'black'},
3

}

80

70

60

50 /
40 =—=Seriesl
30 - / Series2

20

10

Up-down bars can only be applied to Line charts and to Stock charts (by default).

10.15 chart.set_drop_lines()

set_drop_lines (options)
Set properties for the chart drop lines.

Parameters options (dict) — A dictionary of options.

The set _drop_lines() method adds Drop Lines to charts to show the Category value of points
in the data:

chart.set drop lines()

10.15. chart.set_drop_lines() 173

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.0.2

80

70

60

50

. N\

30

N

= Seriesl

Series2

N
N

20

10

It is possible to format the Drop Line Line properties if required. See Chart Formatting:

chart.set drop lines({'line': {'color': 'red"',
'dash type': 'square dot'}})

Drop Lines are only available in Line, Area and Stock charts.

10.16 chart.set_high_low_lines()

set_high _low_lines (options)
Set properties for the chart high-low lines.

Parameters options (dict) — A dictionary of options.

The set _high low lines () method adds High-Low lines to charts to show the maximum and
minimum values of points in a Category:

chart.set high low lines()

174 Chapter 10. The Chart Class

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.0.2

80

70

60

50

. N\

30

N

= Seriesl

Series2

N
N

20

10

It is possible to format the High-Low Line line properties if required. See Chart Formatting:
chart.set high low lines({
'line': {
‘color': 'red',
‘dash _type': 'square dot'

}

High-Low Lines are only available in Line and Stock charts.

10.17 chart.show _blanks_as()

show_blanks_as (option)
Set the option for displaying blank data in a chart.

Parameters option (siring) — A string representing the display option.
The show _blanks as () method controls how blank data is displayed in a chart:

chart.show blanks as('span')

The available options are:

‘gap' # Blank data is shown as a gap. The default.
‘zero' # Blank data is displayed as zero.
'span' # Blank data is connected with a line.

10.18 chart.show_hidden_data()

show_hidden_data()
Display data on charts from hidden rows or columns.

10.17. chart.show_blanks_as() 175

https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.0.2

Display data in hidden rows or columns on the chart:

chart.show hidden data()

10.19 chart.set_rotation()

set_rotation (rotation)
Set the Pie/Doughnut chart rotation.

Parameters rotation (int) — The angle of rotation.

The set_rotation() method is used to set the rotation of the first segment of a Pie/Doughnut
chart. This has the effect of rotating the entire chart:

chart->set rotation(90)

The angle of rotation must be in the range 0 <= rotation <= 360.

This option is only available for Pie/Doughnut charts.

10.20 chart.set_hole_size()

set_hole_size(size)
Set the Doughnut chart hole size.

Parameters size (int) — The hole size as a percentage.
The set _hole size() method is used to set the hole size of a Doughnut chart:

chart->set hole size(33)

The value of the hole size must be in the range 10 <= size <= 90.
This option is only available for Doughnut charts.

See also Working with Charts and Chart Examples.

176 Chapter 10. The Chart Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CHAPTER
ELEVEN

THE CHARTSHEET CLASS

In Excel a chartsheet is a worksheet that only contains a chart.

.8 0 0 [¥ chartsheet.xlsx |
Home I Layout | Tables I Charts I SmartArt I b5 I - B
110 & (~ x| v

Results of sample analysis

-

dample Waph |re)

N warni

PR l SheztlJ_ Chartlﬂ

| Normal View

The Chartsheet class has some of the functionality of data Worksheets such as tab selection,
headers, footers, margins and print properties but its primary purpose is to display a single chart.
This makes it different from ordinary data worksheets which can have one or more embedded

charts.

Like a data worksheet a chartsheet object isn’t instantiated directly. Instead a new chartsheet is
created by calling the add chartsheet () method from a Workbook object:

177

Creating Excel files with Python and XisxWriter, Release 3.0.2

workbook = xlsxwriter.Workbook('filename.xlsx")

worksheet = workbook.add worksheet() # Required for the chart data.
chartsheet = workbook.add chartsheet()

#

wékkbook.close()

A chartsheet object functions as a worksheet and not as a chart. In order to have it display data a
Chart object must be created and added to the chartsheet:

chartsheet
chart

workbook.add chartsheet()
workbook.add chart({'type': 'bar'})

Configure the chart.

chartsheet.set chart(chart)

The data for the chartsheet chart must be contained on a separate worksheet. That is why it is
always created in conjunction with at least one data worksheet, as shown above.

11.1 chartsheet.set_chart()

set_chart (chart)
Add a chart to a chartsheet.

Parameters chart — A chart object.

The set chart () method is used to insert a chart into a chartsheet. A chart object is created
via the Workbook add chart () method where the chart type is specified:

chart = workbook.add chart({type, 'column'})

chartsheet.set chart(chart)

Only one chart can be added to an individual chartsheet.

See The Chart Class, Working with Charts and Chart Examples.

11.2 Worksheet methods

The following The Worksheet Class methods are also available through a chartsheet:

« activate()

select()
» hide()
« set first sheet()

» protect()

178 Chapter 11. The Chartsheet Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

» set zoom()

» set tab color()
« set landscape()
» set portrait()
» set paper()

« set margins()

+ set header()

» set footer()

» get name()

For example:

chartsheet.set tab color('#FF9900")

The set zoom() method can be used to modify the displayed size of the chart.

11.3 Chartsheet Example

See Example: Chartsheet.

11.3. Chartsheet Example 179

Creating Excel files with Python and XisxWriter, Release 3.0.2

180 Chapter 11. The Chartsheet Class

CHAPTER
TWELVE

THE EXCEPTIONS CLASS

The Exception class contains the various exceptions that can be raised by XlsxWriter. In general
XlsxWriter only raised exceptions for un-recoverable errors or for errors that would lead to file

corruption such as creating two worksheets with the same name.
The hierarchy of exceptions in XlsxWriter is:
« XlsxWriterException(Exception)
— XlsxFileError(XlsxWriterException)
«+ FileCreateError(XlsxFileError)
«» UndefinedImageSize (XlsxFileError)
+» UndefinedImageSize(XlsxFileError)
«+ FileSizeError(XlsxFileError)
— XUsxInputError(XlsxWriterException)
» DuplicateTableName (XlsxInputError)
« InvalidWorksheetName (XlsxInputError)

« DuplicateWorksheetName (XlsxInputError)

12.1 Exception: XlsxWriterException

exception XlsxWriterException

Base exception for XlsxWriter.

12.2 Exception: XlsxFileError

exception XLsxFileError

Base exception for all file related errors.

181

Creating Excel files with Python and XisxWriter, Release 3.0.2

12.3 Exception: XisxinputError

exception XUsxInputError

Base exception for all input data related errors.

12.4 Exception: FileCreateError

exception FileCreateError

This exception is raised if there is a file permission, or IO error, when writing the xIsx file to disk.
This can be caused by an non-existent directory or (in Windows) if the file is already open in Excel:

import xlsxwriter
workbook = xlsxwriter.Workbook('exception.xlsx")
worksheet = workbook.add worksheet()

The file exception.xlsx is already open in Excel.
workbook. close()

Raises:

xlsxwriter.exceptions.FileCreateError:
[Errno 13] Permission denied: 'exception.xlsx'

This exception can be caught in a try block where you can instruct the user to close the open file
before overwriting it:

while True:
try:
workbook.close()
except xlsxwriter.exceptions.FileCreateError as e:

decision = input("Exception caught in workbook.close(): \n"
"Please close the file if it is open in Excel.\n"
"Try to write file again? [Y/n]: " % e)
if decision != 'n':
continue
break

See also Example: Catch exception on closing.

12.5 Exception: UndefinedlmageSize

exception UndefinedImageSize

This exception is raised if an image added via insert image () doesn’t contain height or width
information. The exception is raised during Workbook close():

182 Chapter 12. The Exceptions Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

import xlsxwriter

workbook = xlsxwriter.Workbook('exception.xlsx")
worksheet = workbook.add worksheet()
worksheet.insert image('Al', 'logo.png')
workbook.close()

Raises:

xlsxwriter.exceptions.UndefinedImageSize:
logo.png: no size data found in image file.

Note: This is a relatively rare error that is most commonly caused by XisxWriter failing to parse
the dimensions of the image rather than the image not containing the information. In these cases

you should raise a GitHub issue with the image attached, or provided via a link.

12.6 Exception: UnsupportedimageFormat

exception UnsupportedImageFormat

This exception is raised if if an image added via insert image() isn’t one of the supported file
formats: PNG, JPEG, GIF, BMP, WMF or EMF. The exception is raised during Workbook close ():

import xlsxwriter

workbook = xlsxwriter.Workbook('exception.xlsx")
worksheet = workbook.add worksheet()
worksheet.insert image('Al', 'logo.xyz")
workbook.close()

Raises:

xlsxwriter.exceptions.UnsupportedImageFormat:
logo.xyz: Unknown or unsupported image file format.

Note: If the image type is one of the supported types, and you are sure that the file format is
correct, then the exception may be caused by XlsxWriter failing to parse the type of the image

correctly. In these cases you should raise a GitHub issue with the image attached, or provided via
a link.

12.6. Exception: UnsupportedimageFormat 183

Creating Excel files with Python and XisxWriter, Release 3.0.2

12.7 Exception: FileSizeError

exception FileSizeError

This exception is raised if one of the XML files that is part of the xIsx file, or the xIsx file itself,
exceeds 4GB in size:

import xlsxwriter

workbook = xlsxwriter.Workbook('exception.xlsx")
worksheet = workbook.add worksheet()

Write lots of data to create a very big file.
workbook.close()

Raises:

xlsxwriter.exceptions.FileSizeError:
Filesize would require ZIP64 extensions. Use workbook.use zip64().

As noted in the exception message, files larger than 4GB can be created by turning on the zipfile.py
ZIP64 extensions using the use zip64 () method.

12.8 Exception: EmptyChartSeries

exception EmptyChartSeries

This exception is raised if a chart is added to a worksheet without a data series. The exception is
raised during Workbook close():

import xlsxwriter

workbook = xlsxwriter.Workbook('exception.xlsx")
worksheet = workbook.add worksheet()

chart = workbook.add chart({ 'type': 'column'})
worksheet.insert chart('A7', chart)
workbook. close()

Raises:

xlsxwriter.exceptions.EmptyChartSeries:
Chartl must contain at least one data series. See chart.add series().

184 Chapter 12. The Exceptions Class

Creating Excel files with Python and XlsxWriter, Release 3.0.2

12.9 Exception: DuplicateTableName

exception DuplicateTableName

This exception is raised if a duplicate worksheet table name in used via add table(). The
exception is raised during Workbook close():

import xlsxwriter

workbook = xlsxwriter.Workbook('exception.xlsx")
worksheet = workbook.add worksheet()

worksheet.add table('B1:F3', {'name': 'SalesData'})
worksheet.add table('B4:F7', {'name': 'SalesData'})

workbook. close()

Raises:

xlsxwriter.exceptions.DuplicateTableName:
Duplicate name 'SalesData'’ used in worksheet.add table().

12.10 Exception: InvalidWorksheetName

exception InvalidWorksheetName

This exception is raised during Workbook add worksheet () if a worksheet name is too long or
contains restricted characters.

For example with a 32 character worksheet name:
import xlsxwriter
workbook = xlsxwriter.Workbook('exception.xlsx")

name = 'name_that is longer than thirty one characters'
worksheet = workbook.add worksheet(name)

workbook.close()

Raises:

xlsxwriter.exceptions.InvalidWorksheetName:
Excel worksheet name 'name that is longer than thirty one characters'
must be <= 31 chars.

Or for a worksheet name containing one of the Excel restricted characters,i.e. [1] : * ? /
\:

import xlsxwriter

12.9. Exception: DuplicateTableName 185

Creating Excel files with Python and XisxWriter, Release 3.0.2

workbook = xlsxwriter.Workbook('exception.xlsx")
worksheet = workbook.add worksheet('Data[Jan]"')
workbook.close()

Raises:

xlsxwriter.exceptions.InvalidWorksheetName:
Invalid Excel character '[]:*?/\' in sheetname 'Data[Jan]’.

Or for a worksheet name start or ends with an apostrophe:
import xlsxwriter
workbook = xlsxwriter.Workbook('exception.xlsx")
worksheet = workbook.add worksheet("'Sheetl'")
workbook. close()

Raises:

xlsxwriter.exceptions.InvalidWorksheetName:
Sheet name cannot start or end with an apostrophe "'Sheetl'".

12.11 Exception: DuplicateWorksheetName

exception DuplicateWorksheetName

This exception is raised during Workbook add worksheet () if a worksheet name has already
been used. As with Excel the check is case insensitive:

import xlsxwriter
workbook = xlsxwriter.Workbook('exception.xlsx")

worksheetl
worksheet?2

workbook.add worksheet('Sheetl")
workbook.add worksheet('sheetl")

workbook. close()

Raises:

xlsxwriter.exceptions.DuplicateWorksheetName:
Sheetname 'sheetl', with case ignored, is already in use.

186 Chapter 12. The Exceptions Class

CHAPTER
THIRTEEN

WORKING WITH CELL NOTATION

XlsxWriter supports two forms of notation to designate the position of cells: Row-column notation
and A1 notation.

Row-column notation uses a zero based index for both row and column while A1 notation uses the
standard Excel alphanumeric sequence of column letter and 1-based row. For example:

(0, 0)
('Al")

Row-column notation is useful if you are referring to cells programmatically:

for row in range(0, 5):
worksheet.write(row, 0, 'Hello')

A1 notation is useful for setting up a worksheet manually and for working with formulas:

worksheet.write('H1', 200)
worksheet.write('H2', '=H1+1')

In general when using the XlsxWriter module you can use A1 notation anywhere you can use
row-column notation. This also applies to methods that take a range of cells:

worksheet.merge range(2, 1, 3, 3, 'Merged Cells', merge format)
worksheet.merge range('B3:D4', 'Merged Cells', merge format)

XlsxWriter supports Excel’s worksheet limits of 1,048,576 rows by 16,384 columns.

Note:
* Ranges in A1 notation must be in uppercase, like in Excel.

+ In Excel it is also possible to use R1C1 notation. This is not supported by XisxWriter.

187

Creating Excel files with Python and XisxWriter, Release 3.0.2

13.1 Row and Column Ranges

In Excel you can specify row or column ranges such as 1:1 for all of the first row or A: A for all
of the first column. In XisxWriter these can be set by specifying the full cell range for the row or
column:

worksheet.print area('Al:XFD1") # Same as 1:1
worksheet.print area('A1:A1048576') # Same as A:A

This is actually how Excel stores ranges such as 1:1 and A: A internally.
These ranges can also be specified using row-column notation, as explained above:

worksheet.print area(0, 0, 0, 16383) # Same as 1:1
worksheet.print area(0, 0, 1048575, 0) # Same as A:A

To select the entire worksheet range you can specify A1:XFD1048576.

13.2 Relative and Absolute cell references

When dealing with Excel cell references it is important to distinguish between relative and absolute
cell references in Excel.

Relative cell references change when they are copied while Absolute references maintain fixed
row and/or column references. In Excel absolute references are prefixed by the dollar symbol as
shown below:

"Al’ # Column and row are relative.
"$A1" # Column is absolute and row is relative.
"A$1' # Column is relative and row is absolute.

'A1' # Column and row are absolute.

See the Microsoft Office documentation for more information on relative and absolute references.

Some functions such as conditional format () may require absolute references, depending
on the range being specified.

13.3 Defined Names and Named Ranges

Itis also possible to define and use “Defined names/Named ranges” in workbooks and worksheets,
see define name():

workbook.define name('Exchange rate', '=0.96")
worksheet.write('B3', '=B2*Exchange rate')

See also Example: Defined names/Named ranges.

188 Chapter 13. Working with Cell Notation

http://office.microsoft.com/en-001/excel-help/switch-between-relative-absolute-and-mixed-references-HP010342940.aspx

Creating Excel files with Python and XlsxWriter, Release 3.0.2

13.4 Cell Utility Functions

The XUsxWriter utility module contains several helper functions for dealing with A1 notation
as shown below. These functions can be imported as follows:

from xlsxwriter.utility import x1 rowcol to cell

cell = x1 rowcol to cell(l, 2)

13.4.1 xI_rowcol_to_cell()

x1_rowcol_to_cell(row, col[, row_abs, col_abs])
Convert a zero indexed row and column cell reference to a A1 style string.

Parameters

* row (int) — The cell row.

« col (int) — The cell column.

* row_abs (bool) — Optional flag to make the row absolute.

+ col_abs (bool) — Optional flag to make the column absolute.
Return type A1 style string.

The x1_rowcol to cell() function converts a zero indexed row and column cell values to an
A1l style string:

cell = x1 rowcol to cell(0, 0)
cell = x1 rowcol to cell(0, 1)
cell = x1 rowcol to cell(l, 0)

The optional parameters row_abs and col abs can be used to indicate that the row or column
is absolute:

str = x1_rowcol to cell(0, 0, col abs=True)
str = x1 _rowcol to cell(0, 0, row abs=True)
str = x1_rowcol_to _cell(0, 0, row abs=True, col_abs=True)

13.4.2 xI_cell_to_rowcol()
x1_cell_to_rowcol(cell str)
Convert a cell reference in A1 notation to a zero indexed row and column.
Parameters cell_str (siring) — A1 style string, absolute or relative.
Return type Tuple of ints for (row, col).

The x1 _cell to rowcol() function converts an Excel cell reference in A1 notation to a zero
based row and column. The function will also handle Excel’s absolute, $, cell notation:

13.4. Cell Utility Functions 189

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.0.2

(row, col) = x1 cell to rowcol('Al")
(row, col) = x1 cell to rowcol('B1l')
(row, col) = x1 cell to rowcol('C2")
(row, col) = x1 cell to rowcol('$C2")
(row, col) = x1 cell to rowcol('C$2")
(row, col) = x1 cell to rowcol('C2")

13.4.3 xl_col_to_name()
x1_col_to_name (col[, col_abs])
Convert a zero indexed column cell reference to a string.
Parameters
* col (int) — The cell column.
 col_abs (bool) — Optional flag to make the column absolute.
Return type Column style string.

The x1_col to name() converts a zero based column reference to a string:

column = x1 col to name(0)
column = x1 col to name(1)
column = x1 col to name(702)

The optional parameter col abs can be used to indicate if the column is absolute:

column = x1 col to name(0, False)
column = x1 col to name(0, True)
column = x1 col to name(1l, True)

13.4.4 xl_range()
x1_range (first_row, first_col, last_row, last _col)
Converts zero indexed row and column cell references to a A1:B1 range string.
Parameters
« first_row (int) — The first cell row.
« first_col (/nf) — The first cell column.
* last_row (int) — The last cell row.
* last_col (inf) — The last cell column.
Return type A1:B1 style range string.

The x1_range () function converts zero based row and column cell references to an A1:B1 style
range string:

190 Chapter 13. Working with Cell Notation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.0.2

cell range = x1l range(0, 0, 9, 0)
cell range = xl _range(1l, 2, 8, 2)
cell range = x1 _range(0, 0, 3, 4)
cell range = x1 _range(0, 0, 0, 0)

13.4.5 xl_range_abs()
x1_range_abs (first_row, first_col, last _row, last_col)
Converts zero indexed row and column cell references to a A1:B1 absolute range string.
Parameters
« first_row (int) — The first cell row.
« first_col (int) — The first cell column
* last_row (int) — The last cell row.
* last_col (inf) — The last cell column.
Return type A1:B1 style range string.

The x1_range abs () function converts zero based row and column cell references to an abso-
lute A1: B1 style range string:

cell range = x1 range abs(0, 0, 9, 0)
cell range = x1 range abs(1, 2, 8, 2)
cell range = x1 range abs(0, 0, 3, 4)
cell range = x1 _range abs(0, 0, 0, 0)

13.4. Cell Utility Functions 191

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.0.2

192 Chapter 13. Working with Cell Notation

CHAPTER
FOURTEEN

WORKING WITH AND WRITING DATA

The following sections explain how to write various types of data to an Excel worksheet using

XlsxWriter.

14.1 Writing data to a worksheet cell

The worksheet write() method is the most common means of writing Python data to cells

based on its type:

import xlsxwriter

workbook = xlsxwriter.Workbook('write data.xlsx")
worksheet = workbook.add worksheet()

worksheet.write(0
worksheet.write(1
worksheet.write(2
worksheet.write(3
worksheet.write(4

workbook.close()

0’
0’
OI
0’
0’

1234)
1234.56)
'Hello')
None)
True)

Writes
Writes
Writes
Writes
Writes

an int

a float
a string
None

a bool

193

Creating Excel files with Python and XisxWriter, Release 3.0.2

oC® % write_data.xlsx
| # Home | Layout | Tables | Charts | SmartArt | »| v L~

A19 (0 & (= fx E
B e e D o e Ee e L =

t

1234
1234.56
Hello

TRUE

RO | 00| = T | | | RA [P |

[+ < > v JJ sheets [+ I I

Mormal View Ready S

The write() method uses the type() of the data to determine which specific method to use
for writing the data. These methods then map some basic Python types to corresponding Excel
types. The mapping is as follows:

Python type Excel type Worksheet methods

int Number write(),write number()
long
float
Decimal
Fraction
basestring String write(),write string()
str
unicode
None String (blank) | write(),write blank()
datetime.date Number write(),write datetime()
datetime.datetime
datetime.time
datetime.timedelta
bool Boolean write(),write boolean()

The write () method also handles a few other Excel types that are encoded as Python strings in
XlsxWriter:

194 Chapter 14. Working with and Writing Data

Creating Excel files with Python and XlsxWriter, Release 3.0.2

Pseudo-type | Excel type | Worksheet methods
formula string | Formula write(),write formula()
url string URL write(),write url()

It should be noted that Excel has a very limited set of types to map to. The Python types that
the write () method can handle can be extended as explained in the Writing user defined types
section below.

14.2 Writing unicode data

Unicode data in Excel is encoded as UTF-8. XlsxWriter also supports writing UTF-8 data. This
generally requires that your source file is UTF-8 encoded:

worksheet.write('Al', 'Some UTF-8 text')

e 00 | utf8_01.xlsx
Home | Layout | Tables | Charts | Smartart | M v
AL7 1 0 @ (~ & v
S B | € | b | E [H
1 | 3to ¢pasa Ha pycckom!
2
- 4 4 & K l Sh!!tl_! |||

- Mormal View Ready S

See Example: Simple Unicode with Python 3 for a more complete example.

Alternatively, you can read data from an encoded file, convert it to UTF-8 during reading and then
write the data to an Excel file. See Example: Unicode - Polish in UTF-8 and Example: Unicode -
Shift JIS.

14.3 Writing lists of data

Writing compound data types such as lists with XisxWriter is done the same way it would be in
any other Python program: with a loop. The Python enumerate () function is also very useful in
this context:

import xlsxwriter

workbook = xlsxwriter.Workbook('write list.xlsx")
worksheet = workbook.add worksheet()

14.2. Writing unicode data 195

https://docs.python.org/3/library/functions.html#enumerate

Creating Excel files with Python and XisxWriter, Release 3.0.2

my list = [1, 2, 3, 4, 5]

for row num, data in enumerate(my list):
worksheet.write(row num, 0, data)

workbook.close()

[NON | [write_list.xlsx
Home | Layout Tables | Charts | SmartArt 3 v £~
Al4 110 & (= A& v
T A WV U SN N S S —— -
1 1
2 2
3 3
4 4
5 5
6
7
8
9
10
11
12
R e I
Mormal ¥iew Ready A

Or if you wanted to write this horizontally as a row:
import xlsxwriter

workbook = xlsxwriter.Workbook('write list.xlsx")
worksheet = workbook.add worksheet()

my list = [1, 2, 3, 4, 5]

for col num, data in enumerate(my list):
worksheet.write(0, col num, data)

workbook.close()

196 Chapter 14. Working with and Writing Data

Creating Excel files with Python and XlsxWriter, Release 3.0.2

oC® [write_list.xlsx
Home | Layout Tables | Charts | SmartArt 3 v &~
A4 10 & (= fx |~
T AWV N < U ORI
1 1 2 3 4 5
2
3
4
5
6
ri
8
9
10
11
12
13
= CE] - >+ [sheets J + IR I

Mormal View Ready S

For a list of lists structure you would use two loop levels:
import xlsxwriter

workbook = xlsxwriter.Workbook('write list.xlsx")
worksheet = workbook.add worksheet()

my list = [[1, 1, 1, 1, 1],
(2, 2, 2, 2, 11,
[3I 3’ 3’ 3’ 1]’
[4, 4, 4, 4, 1],
[5, 5, 5, 5, 1]]

for row num, row data in enumerate(my list):
for col num, col data in enumerate(row data):
worksheet.write(row num, col num, col data)

workbook.close()

14.3. Writing lists of data 197

Creating Excel files with Python and XisxWriter, Release 3.0.2

oC® [write_list.xlsx
Home | Layout Tables | Charts | SmartArt | 3 v £~
A4 10 & (= fx |~
T AWV N < U OO U SO N
1 1 1 1 1 1
2 2 2 2 2 1
3 3 3 3 3 1
4 a 4 a 4 1
5 5 5 5 5 1
6
ri
8
9
10
11
12
13
= CE] - >+ [sheets J + IR I

Mormal View Ready S

The worksheet class has two utility functions called write row() andwrite column() which
are basically a loop around the write () method:

import xlsxwriter

workbook = xlsxwriter.Workbook('write Tist.xlsx"')
worksheet = workbook.add worksheet()

my list = [1, 2, 3, 4, 5]

worksheet.write row(0, 1, my list)
worksheet.write column(1l, 0, my list)

workbook.close()

198 Chapter 14. Working with and Writing Data

Creating Excel files with Python and XlsxWriter, Release 3.0.2

oC® [write_list.xlsx
l # Home I Layout | Tables I Charts I SmartArt I})|V L5~
A14 1 0 & (- -
| BN 8 | c | b [E [F [[5
1 1 2 3 4 5
2 1
3 2
< 3
5 4
6 5
7
8
9
10
11
12
- o EIS I
— | Normal View | Ready i

14.4 Writing dicts of data

Unlike lists there is no single simple way to write a Python dictionary to an Excel worksheet using
Xlsxwriter. The method will depend of the structure of the data in the dictionary. Here is a simple
example for a simple data structure:

import xlsxwriter

workbook = xlsxwriter.Workbook('write dict.xlsx")
worksheet = workbook.add worksheet()

my dict = {'Bob': [10, 11, 12],
"Ann': [20, 21, 221,
'May': [30, 31, 321}
col num = 0

for key, value in my dict.items():
worksheet.write(0, col num, key)
worksheet.write column(1l, col num, value)
col_num += 1

workbook.close()

14.4. Writing dicts of data 199

Creating Excel files with Python and XisxWriter, Release 3.0.2

®_® [write_dict.xlsx
| # Home | Layout | Tables | Charts | SmartArt |))|V L5~
A18 110 & (- & |~

T A WSV SN =N NN YO N AU ——c
1 May Bob Ann

2 30 10 20

3 31 11 21

4 32 12 22

5

6

7

83

9

10

11

12

oy i< < > v sheen [+ I
E Mormal View | Ready i

14.5 Writing dataframes

The best way to deal with dataframes or complex data structure is to use Python Pandas. Pandas
is a Python data analysis library. It can read, filter and re-arrange small and large data sets and
output them in a range of formats including Excel.

To use XIsxWriter with Pandas you specify it as the Excel writer engine:
import pandas as pd

Create a Pandas dataframe from the data.
df = pd.DataFrame({'Data': [10, 20, 30, 20, 15, 30, 45]})

Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter('pandas simple.xlsx', engine='xlsxwriter"')

Convert the dataframe to an XlsxWriter Excel object.
df.to excel(writer, sheet name='Sheetl')

Close the Pandas Excel writer and output the Excel file.
writer.save()

The output from this would look like the following:

200 Chapter 14. Working with and Writing Data

https://pandas.pydata.org/

Creating Excel files with Python and XlsxWriter, Release 3.0.2

[] & [7 pandas_simple.xlsx
i # Home | Layout | Tables | Charts | SmartArt | »| v -
_ Al : fx| v
ﬂ 'Y B e e o | —
| Data
2 0 10
3 1 20
4 2 30
> 3 20
B 4 15
i 5 30
a8 6 45
9
10 |
11 |
g5
Ez:]—j sheet1 |+ i
. :
ormal View Ready i

For more information on using Pandas with XlsxWriter see Working with Python Pandas and XI-
sxWriter.

14.6 Writing user defined types

As shown in the the first section above, the worksheet write () method maps the main Python
data types to Excel’s data types. If you want to write an unsupported type then you can either
avoid write() and map the user type in your code to one of the more specific write methods or
you can extend it using the add write handler() method. This can be, occasionally, more
convenient then adding a lot of if/else logic to your code.

As an example, say you wanted to modify write() to automatically write uuid types as strings.
You would start by creating a function that takes the uuid, converts it to a string and then writes it
usingwrite string():

def write uuid(worksheet, row, col, uuid, format=None):
return worksheet.write string(row, col, str(uuid), format)

You could then add a handler that matches the uuid type and calls your user defined function:

14.6. Writing user defined types 201

https://docs.python.org/3/library/uuid.html#module-uuid

Creating Excel files with Python and XisxWriter, Release 3.0.2

match, action()
worksheet.add write handler(uuid.UUID, write uuid)

Then you can use write () without further modification:
my uuid = uuid.uuid3(uuid.NAMESPACE DNS, 'python.org')

Write the UUID. This would raise a TypeError without the handler.
worksheet.write('Al', my uuid)

[NN [user_types1.xlsx
| # Home | Layout | Tables | Charts | SmartArt |}}, v 3
A1 10 & (- fx |~
_J A L B e Gl — |

1 &6fad59ea-eeBa-Icad-894e-db77e160355e

T4« > ol D Sheet1 [+ I

Mormal View Ready e

Multiple callback functions can be added using add write handler() but only one callback
action is allowed per type. However, it is valid to use the same callback function for different types:

worksheet.add write handler(int, test_number range)
worksheet.add write handler(float, test number range)

14.6.1 How the write handler feature works

The write() methodis mainly a large if () statement that checks the type () of the input value
and calls the appropriate worksheet method to write the data. The add write handler()
method works by injecting additional type checks and associated actions into this 1 f () statement.

Here is a simplified version of the write () method:

def write(self, row, col, *args):

The first arg should be the token for all write calls.
token = args[0]

Get the token type.
token type = type(token)

Check for any user defined type handlers with callback functions.
if token type in self.write handlers:
write handler = self.write handlers[token type]

202 Chapter 14. Working with and Writing Data

Creating Excel files with Python and XlsxWriter, Release 3.0.2

function return = write handler(self, row, col, *args)

If the return value is None then the callback has returned
control to this function and we should continue as
normal. Otherwise we return the value to the caller and exit.
if function return is None:
pass
else:
return function return

Check for standard Python types, if we haven't returned already.
if token type is bool:
return self.write boolean(row, col, *args)

Etc.

14.6.2 The syntax of write handler functions

Functions used in the add write handler () method should have the following method signa-
ture/parameters:

def my function(worksheet, row, col, token, format=None):
return worksheet.write string(row, col, token, format)

The function will be passed a worksheet instance, an integer row and col value, a token that
matches the type added to add write handler() and some additional parameters. Usually
the additional parameter(s) will only be a cell format instance. However, if you need to handle
other additional parameters, such as those passed to write url() then you can have more
generic handling like this:

def my function(worksheet, row, col, token, *args):
return worksheet.write string(row, col, token, *args)

Note, you don’t have to explicitly handle Al style cell ranges. These will be converted to row and
column values prior to your function being called.

You can also make use of the row and col parameters to control the logic of the function. Say
for example you wanted to hide/replace user passwords with “*“**** when writing string data. If your
data was structured so that the password data was in the second column, apart from the header
row, you could write a handler function like this:

def hide password(worksheet, row, col, string, format=None):
if col == 1 and row > 0:
return worksheet.write string(row, col, '****' format)
else:
return worksheet.write string(row, col, string, format)

14.6. Writing user defined types 203

Creating Excel files with Python and XisxWriter, Release 3.0.2

[NON [user_types3.xlsx
i # Home | Layout Tables | Charts | SmartArt | ¥ v L5~
A23 - fx v
A A I R W R I ——
1 |Name Password City
2 |Sara Hwaw Rome
4 4 P I Sheatl J +,.'
Mormal ¥iew Ready A

14.6.3 The return value of write handler functions

Functions used in the add write handler () method should return one of the following values:

» None: to indicate that control is return to the parent write () method to continue as normal.
This is used if your handler function logic decides that you don’t need to handle the matched
token.

» The return value of the called write xxx() function. This is generally 0 for no error and
a negative number for errors. This causes an immediate return from the calling write()
method with the return value that was passed back.

For example, say you wanted to ignore NaN values in your data since Excel doesn’t support them.
You could create a handler function like the following that matched against floats and which wrote
a blank cell if it was a NaN or else just returned to write () to continue as normal:

def ignore nan(worksheet, row, col, number, format=None):
if math.isnan(number):
return worksheet.write blank(row, col, None, format)
else:
Return control to the calling write() method.
return None

If you wanted to just drop the NaN values completely and not add any formatting to the cell you
could just return 0, for no error:

def ignore nan(worksheet, row, col, number, format=None):
if math.isnan(number):
return 0
else:
Return control to the calling write() method.
return None

204 Chapter 14. Working with and Writing Data

Creating Excel files with Python and XlsxWriter, Release 3.0.2

14.6.4 Write handler examples

See the following, more complete, examples of handling user data types:
» Example: Writing User Defined Types (1)
» Example: Writing User Defined Types (2)
» Example: Writing User Defined types (3)

14.6. Writing user defined types 205

Creating Excel files with Python and XisxWriter, Release 3.0.2

206 Chapter 14. Working with and Writing Data

CHAPTER
FIFTEEN

WORKING WITH FORMULAS

In general a formula in Excel can be used directly in the write formula() method:

worksheet.write formula('Al', '=10*B1 + C1')
®_® write_formula.xlsx
| # Home | Layout . Tables | Charts | SmartArt | ¥ W E e R
A1 2] € fx| =10*B1 + C1 | v
_| A | B | C | D | E [[=]
51 5 1
2
14« = # | sheet1 [+ [
Mormal View Ready A

However, there are a few potential issues and differences that the user should be aware of. These
are explained in the following sections.

15.1 Non US Excel functions and syntax

Excel stores formulas in the format of the US English version, regardless of the language or locale
of the end-user’s version of Excel. Therefore all formula function names written using XlsxWriter
must be in English:

worksheet.write formula('Al', '=SUM(1, 2, 3)"') # 0K
worksheet.write formula('A2', '=SOMME(1, 2, 3)') # French. Error on Lload.

Also, formulas must be written with the US style separator/range operator which is a comma (not
semi-colon). Therefore a formula with multiple values should be written as follows:

207

Creating Excel files with Python and XisxWriter, Release 3.0.2

worksheet.write formula('Al', '=SUM(1, 2, 3)")
worksheet.write formula('A2', '=SUM(1; 2; 3)"')

If you have a non-English version of Excel you can use the following multi-lingual formula translator
to help you convert the formula. It can also replace semi-colons with commas.

15.2 Formula Results

XlsxWriter doesn’t calculate the result of a formula and instead stores the value 0 as the formula
result. It then sets a global flag in the XLSX file to say that all formulas and functions should be
recalculated when the file is opened.

This is the method recommended in the Excel documentation and in general it works fine with
spreadsheet applications. However, applications that don’t have a facility to calculate formulas will
only display the 0 results. Examples of such applications are Excel Viewer, PDF Converters, and
some mobile device applications.

If required, it is also possible to specify the calculated result of the formula using the optional
value parameter forwrite formula():

worksheet.write formula('Al', '=2+2', num format, 4)

The value parameter can be a number, a string, a bool or one of the following Excel error codes:

It is also possible to specify the calculated result of an array formula created with
write array formula():

worksheet.write array formula('Al:Al1', '{=SUM(B1:C1*B2:C2)}', cell format, 2005)

However, using this parameter only writes a single value to the upper left cell in the result array. For
a multi-cell array formula where the results are required, the other result values can be specified
by usingwrite number() to write to the appropriate cell:

worksheet.write array formula('Al1:A3', '{=TREND(C1:C3,B1:B3)}', cell format, 15)
worksheet.write number('A2', 12, cell format)
worksheet.write number('A3', 14, cell format)

208 Chapter 15. Working with Formulas

https://en.excel-translator.de/language/

Creating Excel files with Python and XlsxWriter, Release 3.0.2

15.3 Dynamic Array support

Excel introduced the concept of “Dynamic Arrays” and new functions that use them in Office 365.
The new functions are:

* FILTER()
UNIQUE()
SORT ()
SORTBY ()
XLOOKUP ()
XMATCH()
RANDARRAY ()
« SEQUENCE()

The following special case functions were also added with Dynamic Arrays:

« SINGLE() - Explained below in Dynamic Arrays - The Implicit Intersection Operator “@”.
« ANCHORARRAY () - Explained below in Dynamic Arrays - The Spilled Range Operator “#”.
« LAMBDA() and LET () - Explained below in The Excel 365 LAMBDA() function.

Dynamic arrays are ranges of return values that can change in size based on the results. For
example, a function such as FILTER() returns an array of values that can vary in size depending
on the the filter results. This is shown in the snippet below from Example: Dynamic array formulas:

worksheetl.write('F2', '=FILTER(A1:D17,C1:C17=K2)")

Which gives the results shown in the image below. The dynamic range here is “F2:15” but it could
be different based on the filter criteria.

15.3. Dynamic Array support 209

Creating Excel files with Python and XisxWriter, Release 3.0.2

B dynamic_arrays

Home Insert Draw ¢ Tell me = Share [J1 Comments
F2 . fx =FILTER(A1:D17,C1:C17=K2) v
A B C D E F G H I]

Bl Region Sales Rep Product Units Region Sales Rep Product Units

2 |East Tom Apple 6380 Tom Apple 6380
3 West Fred Grape 5619 |East Fritz Apple 4354
4 |North Amy Pear 4565 |South Sal Apple 1310
5 South Sal Banana 5323 South Hector Apple 9814
6 East Fritz Apple 4354

7 West Sravan Grape 7185

8 North Xi Pear 5231

S South Hector Banana 2427

S Filter Unigue Sort Sortby Xlo +
Ready 1T FH] -~ e m— 4 125%

It is also possible to get dynamic array behavior with older Excel functions. For example, the Excel
function =LEN (A1) applies to a single cell and returns a single value but it is also possible to apply
it to a range of cells and return a range of values using an array formula like {=LEN(A1:A3)}. This
type of “static” array behavior is called a CSE (Ctrl+Shift+Enter) formula. With the introduction of
dynamic arrays in Excel 365 you can now write this function as =LEN(A1:A3) and get a dynamic
range of return values. In XlsxWriter you can use the write array formula() worksheet
method to get a static/CSE range and write dynamic array formula() to get a dynamic
range. For example:

worksheet.write dynamic_array formula('B1:B3', '=LEN(A1:A3)")

Which gives the following result:

210 Chapter 15. Working with Formulas

Creating Excel files with Python and XlsxWriter, Release 3.0.2

B function_new

Home Insert Draw ¢ Tell me = Share [J1 Comments
B1 . fx =LEN(A1:A3) v
A B C D E F

1 |Foo ' 3]

2 Food ' 4
3 |Frood 5
4
5

Sheetl ==
Ready 1T] 0 - L + 125%

The difference between the two types of array functions is explained in the Microsoft documenta-
tion on Dynamic array formulas vs. legacy CSE array formulas. Note the use of the word “legacy”
here. This, and the documentation itself, is a clear indication of the future importance of dynamic
arrays in Excel.

For a wider and more general introduction to dynamic arrays see the following: Dynamic array
formulas in Excel.

15.4 Dynamic Arrays - The Implicit Intersection Operator “@”

The Implicit Intersection Operator, “@”, is used by Excel 365 to indicate a position in a formula
that is implicitly returning a single value when a range or an array could be returned.

We can see how this operator works in practice by considering the formula we used in the last
section: =LEN(A1:A3). In Excel versions without support for dynamic arrays, i.e. prior to Excel
365, this formula would operate on a single value from the input range and return a single value,
like this:

15.4. Dynamic Arrays - The Implicit Intersection Operator “@” 21

https://support.microsoft.com/en-us/office/dynamic-array-formulas-vs-legacy-cse-array-formulas-ca421f1b-fbb2-4c99-9924-df571bd4f1b4
https://exceljet.net/dynamic-array-formulas-in-excel
https://exceljet.net/dynamic-array-formulas-in-excel

Creating Excel files with Python and XisxWriter, Release 3.0.2

®_® [function_old.xlsx
| # Home | Layout | Tables | Charts | SmartArt |))|V o B
B1 1 @ © [© fx| =LEN(AL:A3) E
4 A 8 C | D | E [[=]
2 |Food
3 |Frood
4
ERCE ETvEY I
Mormal View Ready A

There is an implicit conversion here of the range of input values, “A1:A3”, to a single value “A1”.
Since this was the default behavior of older versions of Excel this conversion isn’t highlighted in
any way. But if you open the same file in Excel 365 it will appear as follows:

B function_old

Home Insert Draw ¢ Tell me ¥ Share [J Comments
Bl . fe =LEN(@A1:A3) v
A B C D E F
1 |Foo | 3_|
2 |Food
3 |Frood
4
Sheetl +
Ready 1T m - _ + 125%

The result of the formula is the same (this is important to note) and it still operates on, and returns,
a single value. However the formula now contains a “@” operator to show that it is implicitly using
a single value from the given range.

Finally, if you entered this formula in Excel 365, or with write dynamic array formula() in
XlsxWriter, it would operate on the entire range and return an array of values:

212 Chapter 15. Working with Formulas

Creating Excel files with Python and XlsxWriter, Release 3.0.2

B function_new

Home Insert Draw ¢ Tell me = Share [J1 Comments
B1 . fx =LEN(A1:A3) v
A B C D E F

1 |Foo ' 3]

2 Food ' 4
3 |Frood 5
4
5

Sheetl ==
Ready 1T] 0 - L + 125%

If you are encountering the Implicit Intersection Operator “@” for the first time then it is prob-
ably from a point of view of “why is Excel/XIsxWriter putting @s in my formulas”. In practical
terms if you encounter this operator, and you don’t intend it to be there, then you should prob-
ably write the formula as a CSE or dynamic array function using write array formula() or
write dynamic array formula() (see the previous section on Dynamic Array support).

A full explanation of this operator is shown in the Microsoft documentation on the Implicit intersec-
tion operator: @.

One important thing to note is that the “@” operator isn’t stored with the formula. It is just displayed
by Excel 365 when reading “legacy” formulas. However, it is possible to write it to a formula,
if necessary, using SINGLE() or x1fn.SINGLE(). The unusual cases where this may be
necessary are shown in the linked document in the previous paragraph.

15.5 Dynamic Arrays - The Spilled Range Operator “#”

In the section above on Dynamic Array support we saw that dynamic array formulas can return
variable sized ranges of results. The Excel documentation refers to this as a “Spilled” range/array
from the idea that the results spill into the required number of cells. This is explained in the
Microsoft documentation on Dynamic array formulas and spilled array behavior.

Since a spilled range is variable in size a new operator is required to refer to the range. This
operator is the Spilled range operator and it is represented by “#”. For example, the range F2# in
the image below is used to refer to a dynamic array returned by UNIQUE () in the cell F2. This
example is taken from the XlsxWriter program Example: Dynamic array formulas.

15.5. Dynamic Arrays - The Spilled Range Operator “#” 213

https://support.microsoft.com/en-us/office/implicit-intersection-operator-ce3be07b-0101-4450-a24e-c1c999be2b34?ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/implicit-intersection-operator-ce3be07b-0101-4450-a24e-c1c999be2b34?ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/dynamic-array-formulas-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
https://support.microsoft.com/en-us/office/spilled-range-operator-3dd5899f-bca2-4b9d-a172-3eae9ac22efd

Creating Excel files with Python and XisxWriter, Release 3.0.2

o H = B dynamic_arrays ‘-?
Home Insert Draw Q Tell me 1= Share L] Comments
TEXT S % « fx =COUNTA(F2#) v

E F G H [J K L M
2 | |Tom Tom F2#) |
3 Fred Fred
4 Amy Amy
5 Sal Sal
B Fritz Fritz
7 Sravan Sravan
8 Xi Xi
9 Hector Hector
LNl —

4 uence Spill ranges Older functions +
Edit 1T FH o - + 125%

Unfortunately, Excel doesn’t store the formula like this and in XisxWriter you need to use the
explicit function ANCHORARRAY () to refer to a spilled range. The example in the image above was
generated using the following:

worksheet9.write('J2', '=COUNTA(ANCHORARRAY(F2))"') # Same as '=COUNTA(F2#)' in Excel.

15.6 The Excel 365 LAMBDA() function

Note: at the time of writing the LAMBDA() function in Excel is only available to Excel 365
users subscribed to the Beta Channel updates.

Beta Channel versions of Excel 365 have introduced a powerful new function/feature called
LAMBDA (). This is similar to the lambda function in Python (and other languages).

Consider the following Excel example which converts the variable temp from Fahrenheit to Cel-
sius:

LAMBDA (temp, (5/9) * (temp-32))

This could be called in Excel with an argument:

214 Chapter 15. Working with Formulas

https://docs.python.org/3/howto/functional.html#small-functions-and-the-lambda-expression

Creating Excel files with Python and XlsxWriter, Release 3.0.2

=LAMBDA (temp, (5/9) * (temp-32))(212)

Or assigned to a defined name and called as a user defined function:

=ToCelsius(212)

This is similar to this example in Python:

>>> to celsius = lambda temp: (5.0/9.0) * (temp-32)
>>> to celsius(212)
100.0

A XlsxWriter program that replicates the Excel is shown in Example: Excel 365 LAMBDA() func-
tion.

The formula is written as follows:

worksheet.write('A2', '=LAMBDA(xlpm.temp, (5/9) * (xlpm.temp-32))(32)")

Note, that the parameters in the LAMBDA () function must have a “_xlpm.” prefix for compatibility
with how the formulas are stored in Excel. These prefixes won’t show up in the formula, as shown
in the image.

Home Insert Draw ¢ Tell me = Share L] comments
A2 . fx =LAMBDA(temp, (5/9) * (temp-32))(32) v
A B C D E F G
1 'Mote: Lambda functions currently only work with the Beta Channel versions of Excel

2]

| |
3 100
4
5
6
7
8
9

Sheet1 +
Ready LT FH] = e — 4 125%

The LET () function is often used in conjunction with LAMBDA () to assign names to calculation

15.6. The Excel 365 LAMBDA() function 215

Creating Excel files with Python and XisxWriter, Release 3.0.2

results.

15.7 Formulas added in Excel 2010 and later

Excel 2010 and later added functions which weren’t defined in the original file specification. These
functions are referred to by Microsoft as future functions. Examples of these functions are ACOT,
CHISQ.DIST.RT, CONFIDENCE.NORM, STDEV.P, STDEV.S and WORKDAY . INTL.

When written using write formula() these functions need to be fully qualified with a _x1fn.
(or other) prefix as they are shown the list below. For example:

worksheet.write formula('Al', '= x1fn.STDEV.S(B1:B10O)")

These functions will appear without the prefix in Excel:

@@ write_formula.xlsx
| # Home | Layout _ Tables | Charts | SmartArt | »| v I3~
A2 = fx| =STDEV.S(B1:B10) -
_] | B C D E
3 0.9660918] 5
—_1 Sheetl
EEJ Mormal View Read:_} i

Alternatively, you can enable the use future functions optioninthe Workbook () construc-
tor, which will add the prefix as required:

workbook = Workbook('write formula.xlsx', {'use future functions': True})
...

worksheet.write formula('Al', '=STDEV.S(B1:B10)")

If the formula already contains a _x1fn. prefix, on any function, then the formula will be ignored
and won’t be expanded any further.

Note: Enabling the use future functions option adds an overhead to all formula processing in
XlsxWriter. If your application has a lot of formulas or is performance sensitive then it is best to

use the explicit x1fn. prefix instead.

The following list is taken from MS XLSX extensions documentation on future functions.
« xlfn.ACOT

216 Chapter 15. Working with Formulas

http://msdn.microsoft.com/en-us/library/dd907480%28v=office.12%29.aspx

Creating Excel files with Python and XlsxWriter, Release 3.0.2

« x1fn.ACOTH

« XLfn.AGGREGATE

« x1lfn.ARABIC

« xlfn.BASE

« XLlfn.BETA.DIST

« x1lfn.BETA.INV

« X1fn.BINOM.DIST

« X1fn.BINOM.DIST.RANGE
« x1lfn.BINOM.INV

« x1lfn.BITAND

« XLUfn.BITLSHIFT

« x1lfn.BITOR

¢ xLlfn.BITRSHIFT

« x1fn.BITXOR

* XLUlfn.CEILING.MATH
« xLlfn.CEILING.PRECISE
« Xx1fn.CHISQ.DIST

+ XLUfn.CHISQ.DIST.RT
« x1lfn.CHISQ.INV

« X1fn.CHISQ.INV.RT
« XxLlfn.CHISQ.TEST

« x1fn.COMBINA

« x1fn.CONCAT

« XLfn.CONFIDENCE.NORM
« x1fn.CONFIDENCE.T
« xlfn.COT

« xLlfn.COTH

« x1lfn.COVARIANCE.P
« X1fn.COVARIANCE.S
« x1fn.CSC

« xlfn.CSCH

« x1fn.DAYS

15.7. Formulas added in Excel 2010 and later 217

Creating Excel files with Python and XisxWriter, Release 3.0.2

_x1fn.

DECIMAL

ECMA.CEILING

~xlfn.
~xlfn.
_x1fn.
~xlfn.
~xlfn.
_x1fn.
_xlfn.
~xlfn.
_x1fn.
_x1fn.
~xlfn.
_x1fn.
_x1fn.
~xlfn.
_x1fn.
_x1fn.
~xlfn.
. GAMMA

.GAMMA .DIST
.GAMMA . INV

. GAMMALN . PRECISE
. GAUSS

~xlfn.
_xlfn.
_x1fn.
_xlfn.
~xlfn.
_x1fn.
_x1fn.
~xlfn.

_x1fn
_x1fn
~xlfn
_x1fn
_x1fn

ERF.PRECISE
ERFC.PRECISE
EXPON.DIST

F.DIST

F.DIST.RT

F.INV

F.INV.RT

F.TEST

FILTERXML

FLOOR.MATH
FLOOR.PRECISE
FORECAST.ETS
FORECAST.ETS.CONFINT
FORECAST.ETS.SEASONALITY
FORECAST.ETS.STAT
FORECAST.LINEAR
FORMULATEXT

HYPGEOM.DIST
IFNA

IFS

IMCOSH

IMCOT

IMCSC

IMCSCH

IMSEC

218

Chapter 15. Working with Formulas

Creating Excel files with Python and XlsxWriter, Release 3.0.2

_x1fn.IMSECH
_x1fn.IMSINH
_x1fn.IMTAN
_x1fn.ISFORMULA
ISO.CEILING

« xlfn.ISOWEEKNUM

« X1fn.LOGNORM.DIST

« XLfn.LOGNORM. INV

« x1fn.MAXIFS

« x1lfn.MINIFS

« xLlfn.MODE.MULT

« x1lfn.MODE.SNGL

« xLlfn.MUNIT

« X1fn.NEGBINOM.DIST
« NETWORKDAYS. INTL

« xLfn.NORM.DIST

« XL1fn.NORM.INV

+ XLfn.NORM.S.DIST

« xLfn.NORM.S.INV

« x1fn.NUMBERVALUE

+ XLfn.PDURATION

« xLlfn.PERCENTILE.EXC
« XL1fn.PERCENTILE.INC
« XxLfn.PERCENTRANK.EXC
« x1fn.PERCENTRANK. INC
« XL1fn.PERMUTATIONA

« xlfn.PHI

« x1fn.POISSON.DIST

« X1fn.QUARTILE.EXC

+ XL1fn.QUARTILE.INC

« x1fn.QUERYSTRING

« x1fn.RANK.AVG

15.7. Formulas added in Excel 2010 and later 219

Creating Excel files with Python and XisxWriter, Release 3.0.2

« xlfn.
« xlfn.
« xlfn.
« xlfn
« xlfn.
+ xlfn.
« xlfn.
« xlfn
« xlfn.
« xlfn.
« xlfn.
« xlfn.
« xlfn.
« xlfn.
« xlfn.
+ xlfn.
« xlfn
« xlfn.
« xlfn.
« xlfn
« xlfn
« xlfn
« xlfn.

~xlfn.
« xlfn.

RANK. EQ
RRI
SEC

.SECH

SHEET
SHEETS
SKEW.P

.STDEV.P

STDEV.S
SWITCH
.DIST
.DIST.2T
.DIST.RT
LINV
JINV. 2T

T
T
T
T
T
T.TEST

.TEXTJOIN

UNICHAR
UNICODE

.VAR.P
.VAR.S
.WEBSERVICE

WEIBULL.DIST

WORKDAY . INTL

XOR
Z.TEST

The dynamic array functions shown in the Dynamic Array support section above are also future

functions:
« xlfn.
« xlfn.
+ xlfn.
« xlfn.

UNIQUE
XMATCH
XLOOKUP
SORTBY

220

Chapter 15. Working with Formulas

Creating Excel files with Python and XlsxWriter, Release 3.0.2

« xlfn. xlws.SORT

« xlfn. xlws.FILTER
« x1fn.RANDARRAY

« x1fn.SEQUENCE

« xL1fn.ANCHORARRAY
« x1fn.SINGLE

« x1fn.LAMBDA

However, since these functions are part of a powerful new feature in Excel, and likely to be very
important to end users, they are converted automatically from their shorter version to the explicit
future function version by XisxWriter, even without the use future function option. If you
need to override the automatic conversion you can use the explicit versions with the prefixes
shown above.

15.8 Using Tables in Formulas

Worksheet tables can be added with XlsxWriter using the add table() method:
worksheet.add table('B3:F7', {options})
By default tables are named Tablel, Table2, etc., in the order that they are added. However it
can also be set by the user using the name parameter:
worksheet.add table('B3:F7', {'name': 'SalesData'})
If you need to know the name of the table, for example to use it in a formula, you can get it as
follows:

table = worksheet.add table('B3:F7")
table name = table.name

When used in a formula a table name such as TableX should be referred to as TableX[] (like a
Python list):
worksheet.write formula('A5', '=VLOOKUP("Sales", Tablel[], 2, FALSE")

15.9 Dealing with formula errors

If there is an error in the syntax of a formula it is usually displayed in Excel as #NAME?. Alternatively
you may get a warning from Excel when the file is loaded. If you encounter an error like this you
can debug it as follows:

1. Ensure the formula is valid in Excel by copying and pasting it into a cell. Note, this should be
done in Excel and not other applications such as OpenOffice or LibreOffice since they may
have slightly different syntax.

15.8. Using Tables in Formulas 221

Creating Excel files with Python and XisxWriter, Release 3.0.2

2. Ensure the formula is using comma separators instead of semi-colons, see Non US Excel
functions and syntax above.

3. Ensure the formula is in English, see Non US Excel functions and syntax above.

4. Ensure that the formula doesn’t contain an Excel 2010+ future function as listed above (For-
mulas added in Excel 2010 and later). If it does then ensure that the correct prefix is used.

5. If the function loads in Excel but appears with one or more @ symbols added then it
is probably an array function and should be written using write array formula() or
write dynamic array formula() (see the sections above on Dynamic Array support
and Dynamic Arrays - The Implicit Intersection Operator “‘@”).

Finally if you have completed all the previous steps and still get a #NAME? error you can examine
a valid Excel file to see what the correct syntax should be. To do this you should create a valid
formula in Excel and save the file. You can then examine the XML in the unzipped file.

The following shows how to do that using Linux unzip and libxml’s xmllint to format the XML for
clarity:

$ unzip myfile.xlsx -d myfile
$ xmllint --format myfile/xl/worksheets/sheetl.xml | grep '</f>'

<f>SUM(1, 2, 3)</f>

222 Chapter 15. Working with Formulas

http://xmlsoft.org/xmllint.html

CHAPTER
SIXTEEN

WORKING WITH DATES AND TIME

Dates and times in Excel are represented by real numbers, for example “Jan 1 2013 12:00 PM” is
represented by the number 41275.5.

The integer part of the number stores the number of days since the epoch and the fractional part
stores the percentage of the day.

A date or time in Excel is just like any other number. To display the number as a date you must
apply an Excel number format to it. Here are some examples:

import xlsxwriter

workbook = xlsxwriter.Workbook('date examples.xlsx')
worksheet = workbook.add worksheet()

Widen column A for extra visibility.
worksheet.set column('A:A', 30)

A number to convert to a date.
number = 41333.5

Write it as a number without formatting.
worksheet.write('Al', number) # 41333.5

format2 = workbook.add format({'num format': 'dd/mm/yy'})
worksheet.write('A2', number, format2) # 28/02/13

format3 = workbook.add format({'num format': 'mm/dd/yy'})
worksheet.write('A3', number, format3) # 02/28/13

format4 = workbook.add format({'num format': 'd-m-yyyy'})
worksheet.write('A4', number, format4) # 28-2-2013

format5 = workbook.add format({'num format': 'dd/mm/yy hh:mm'})
worksheet.write('A5', number, formath) # 28/02/13 12:00

formaté = workbook.add format({'num format': 'd mmm yyyy'})
worksheet.write('A6', number, format6) # 28 Feb 2013

format7 = workbook.add format({'num format': 'mmm d yyyy hh:mm AM/PM'})
worksheet.write('A7', number, format7) # Feb 28 2013 12:00 PM

223

Creating Excel files with Python and XisxWriter, Release 3.0.2

workbook. close()

e 00 || date_examples.xlsx
Home | Layout | Tables | Charts | SmartArt | 3| v Lt~
A7 Lt @ (- fx| 28/02/2013 12:00:00 -
_—J_ﬂﬁ B | C | D =
41333.5

28/02/13

02/28/13

28-2-2013

28/02/13 12:00

28 Feb 2013

Feb 28 2013 12:00 PML

mm!mmhwmw

10

11

12

12

s B e/ [
— Mormal View Ready A

To make working with dates and times a little easier the XlsxWriter module provides a
write datetime() method to write dates in standard library datetime format.

Specifically it supports datetime objects of type datetime.datetime, datetime.date, date-
time.time and datetime.timedelta.

There are many way to create datetime objects, for example the date-
time.datetime.strptime() method:

date time = datetime.datetime.strptime('2013-01-23", '%Y-%m-%d")

See the datetime documentation for other date/time creation methods.

As explained above you also need to create and apply a number format to format the date/time:

date format = workbook.add format({'num format': 'd mmmm yyyy'})
worksheet.write datetime('Al', date time, date format)

Displays "23 January 2013"

Here is a longer example that displays the same date in a several different formats:

224 Chapter 16. Working with Dates and Time

https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime
https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime
https://docs.python.org/3/library/datetime.html#module-datetime

Creating Excel files with Python and XlsxWriter, Release 3.0.2

from datetime import datetime
import xlsxwriter

Create a workbook and add a worksheet.
workbook = xlsxwriter.Workbook('datetimes.xlsx")
worksheet = workbook.add worksheet()

bold = workbook.add format({'bold': True})

Expand the first columns so that the dates are visible.
worksheet.set column('A:B', 30)

Write the column headers.
worksheet.write('Al', 'Formatted date', bold)
worksheet.write('Bl1', 'Format', bold)

Create a datetime object to use in the examples.

date_time = datetime.strptime('2013-01-23 12:30:05.123",
'%Y -%Mm-%d %H:%M:%S.%f ")

Examples date and time formats.
date formats = (
'dd/mm/yy",
"‘mm/dd/yy",
‘dd m yy',
‘d mm yy',
'd mmm yy',
'd mmmm yy',
‘d mmmm yyy',
‘d mmmm yyyy',
‘dd/mm/yy hh:mm',
‘dd/mm/yy hh:mm:ss',
‘dd/mm/yy hh:mm:ss.000",
"hh:mm*,
"hh:mm:ss',
"hh:mm:ss.000"',
)

Start from first row after headers.
row = 1

Write the same date and time using each of the above formats.
for date format str in date formats:

Create a format for the date or time.
date format = workbook.add format({'num format': date format str,
‘align': 'left'})

Write the same date using different formats.
worksheet.write datetime(row, 0, date time, date format)

Also write the format string for comparison.
worksheet.write string(row, 1, date format str)

Creating Excel files with Python and XisxWriter, Release 3.0.2

row += 1

workbook.close()

.8 00 || datetimes.xlsx |
Home I Layout | Tables I Charts I Smartirt I » v fE

A9 1 0 @ (= f R

Formatted date Format
23/01/13 dd/mm/fyy
01/23/13 mm,/dd/yy
23113 dd m yy
230113 d mm yy

23 lan 13 d mmm yy

23 lanuary 13 d mmmm yy
23 lanuary 2013 d mmmm yyy

23 lanuary 2013 d mmmm yyyy

23/01/13 12:30 dd/mm/fyy hh:mm
23/01/13 12:30:05 dd/mm/yy hh:mm:ss
23/01/13 12:30:05.123 dd/mm/yy hh:mm:ss.000

A9,

Mormal View

16.1 Default Date Formatting

In certain circumstances you may wish to apply a default date format when writing datetime ob-
jects, for example, when handling a row of data with write row().

In these cases it is possible to specify a default date format string using the Workbook () con-
structor default date format option:

workbook = xlsxwriter.Workbook('datetimes.xlsx', {'default date format':
"dd/mm/yy'})

worksheet workbook.add worksheet()

date time = datetime.now()

worksheet.write datetime(0, 0, date time) # Formatted as 'dd/mm/yy'

workbook.close()

226 Chapter 16. Working with Dates and Time

Creating Excel files with Python and XlsxWriter, Release 3.0.2

16.2 Timezone Handling

Excel doesn’t support timezones in datetimes/times so there isn’t any fail-safe way that XisxWriter
can map a Python timezone aware datetime into an Excel datetime. As such the user should
handle the timezones in some way that makes sense according to their requirements. Usually this
will require some conversion to a timezone adjusted time and the removal of the tzinfo from the
datetime object so that it can be passed to write datetime():

utc datetime = datetime(2016, 9, 23, 14, 13, 21, tzinfo=utc)
naive datetime = utc_datetime.replace(tzinfo=None)

worksheet.write datetime(row, 0, naive datetime, date format)

Alternatively the Workbook () constructor option remove timezone can be used to strip the
timezone from datetime values passed to write datetime(). The defaultis False. To enable
this option use:

workbook = xlsxwriter.Workbook(filename, {'remove timezone': True})

When Working with Python Pandas and XlsxWriter you can pass the argument as follows:

writer = pd.ExcelWriter('pandas example.xlsx"',
engine='xlsxwriter',
options={'remove timezone': True})

16.2. Timezone Handling 227

Creating Excel files with Python and XisxWriter, Release 3.0.2

228 Chapter 16. Working with Dates and Time

CHAPTER
SEVENTEEN

WORKING WITH COLORS

Throughout XIsxWriter colors are specified using a Html style #RRGGBB value. For example with
a Format object:

cell format.set font color('#FFO000")

For backward compatibility a limited number of color names are supported:

cell format.set font color('red")

The color names and corresponding #RRGGBB value are shown below:

Color name | RGB color code
black #000000
blue #00O0OFF
brown #800000
cyan #OOFFFF
gray #808080
green #008000
lime #0OFFOO
magenta #FFOOFF
navy #000080
orange #FF6600
pink #FFOOFF
purple #800080
red #FFOO00
silver #COCOCO
white #FFFFFF
yellow #FFFFOO

229

Creating Excel files with Python and XisxWriter, Release 3.0.2

230 Chapter 17. Working with Colors

CHAPTER
EIGHTEEN

WORKING WITH CHARTS

This section explains how to work with some of the options and features of The Chart Class.

The majority of the examples in this section are based on a variation of the following program:

import xlsxwriter

workbook = xlsxwriter.Workbook('chart line.xlsx")
worksheet = workbook.add worksheet()

Add the worksheet data to be plotted.
data = [10, 40, 50, 20, 10, 50]
worksheet.write column('Al', data)

Create a new chart object.
chart = workbook.add chart({ 'type': 'line'})

Add a series to the chart.
chart.add series({'values': '=Sheetl!A1:A6"'})

Insert the chart into the worksheet.
worksheet.insert chart('Cl', chart)

workbook.close()

231

Creating Excel files with Python and XisxWriter, Release 3.0.2

NN ; D X - K181 S —
Home | Layout | Tables | Charts | SmartArt | b5 I -
Al 1 0 ® (= f| 10 |-
. e . ..c . .b . E |l F J G J. H.UI[=
0
L BD
2 40 |
3 50 | 5o
4 20 |
5 0 | ap
] 50 |
- 3
E : |
9 L
10 |
11 10
12
13]
14 1 2 3] 5 [
15 T
16
) [—— ML sheets / + I [u
Mormal View Rieady w

See also Chart Examples.

18.1 Chart Value and Category Axes

When working with charts it is important to understand how Excel differentiates between a chart
axis that is used for series categories and a chart axis that is used for series values.

In the majority of Excel charts the X axis is the category axis and each of the values is evenly
spaced and sequential. The Y axis is the value axis and points are displayed according to their
value:

232 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

16
14
12
10

O N B O

1 2

4

3
Category Axis

Excel treats these two types of axis differently and exposes different properties for each. For
example, here are the properties for a category axis:

18.1. Chart Value and Category Axes 233

Creating Excel files with Python and XisxWriter, Release 3.0.2

Format Axis

Scale

Number Horizontal axzis type
. Ticks —
Jg Font o Automatic | Text | | Date
[TH Text Box
& Fill Horizontal axis scale
\ Lime
) Shadow Vertical axis crosses at category number: | 1

() Glow & Soft Edges Interval between labels:

Interval between tick marks:

Label distance from axis: 100

Vertical axis crosses between categories
| Categories in reverse order

|| Vertical axis crosses at maximum category

Here are properties for a value axis:

234 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

Format Axis
Scale
Mumber Vertical axis scale
|__ Ticks Auto
/@ Font Minimum: 0.0
[T TextB
;” ox Maximurmn: 16.0
i
“, Line Maijor unit: 2.0
| Shadow Miner unit: 0.4
[] Glow & Soft Edges
Haorizontal
v 0.0
¥ axis crosses at:

Display units: | None B Show display units label on chart

| Logarithmic scale Base: 10.0

| Values in reverse order

| Horizental axis crosses at maximum value

Cancel

As such, some of the XIsxWriter axis properties can be set for a value axis, some can be set for
a category axis and some properties can be set for both. For example reverse can be set for
either category or value axes while the min and max properties can only be set for value axes
(and Date Axes). The documentation calls out the type of axis to which properties apply.

For a Bar chart the Category and Value axes are reversed:

18.1. Chart Value and Category Axes 235

Creating Excel files with Python and XisxWriter, Release 3.0.2

0 5 10

Category Axis

A Scatter chart (but not a Line chart) has 2 value axes:

236 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

3

0 T T T T
0 1 2 3 4

Date Category Axes are a special type of category axis that give them some of the properties of
values axes such as min and max when used with date or time values.

18.2 Chart Series Options

This following sections detail the more complex options of the add series() Chart method:

marker
trendline

y error_bars
X_error_bars
data labels
points
smooth

18.2. Chart Series Options 237

Creating Excel files with Python and XisxWriter, Release 3.0.2

18.3 Chart series option: Marker

The marker format specifies the properties of the markers used to distinguish series on a chart. In
general only Line and Scatter chart types and trendlines use markers.

The following properties can be set for marker formats in a chart:

type
size
border
fill
pattern
gradient

The type property sets the type of marker that is used with a series:

chart.add series({
'values': '=Sheetl!A1:$A%$6"',
'marker': {'type': 'diamond'},

}

60
50 - /‘

. N\

30 / \ / =—4=Seriesl
20

10 ¢ "

The following type properties can be set for marker formats in a chart. These are shown in the
same order as in the Excel format dialog:

automatic
none
square
diamond
triangle
X

star
short_dash
long dash
circle
plus

238 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

The automatic type is a special case which turns on a marker using the default marker style for
the particular series number:

chart.add series({
'values': '=Sheetl!A1:$A%6",
'marker': {'type': 'automatic'},

})
If automatic is on then other marker properties such as size, border or fill cannot be set.
The size property sets the size of the marker and is generally used in conjunction with type:
chart.add series({
‘values': '=Sheetl!A1:$A%6",

'marker': {'type': 'diamond', ‘'size': 7},

}

Nested border and fill properties can also be set for a marker:

chart.add series({

'values': '=Sheetl!A1:$A%6",
'marker': {

"type': 'square',

'size': 8,

'border': {'color': 'black'},

fill': {'color': 'red'},
}

60

. [
. A\ / |
/ / =@=Series1

20
10 —/

18.4 Chart series option: Trendline

A trendline can be added to a chart series to indicate trends in the data such as a moving average
or a polynomial fit.

The following properties can be set for trendlines in a chart series:

18.4. Chart series option: Trendline 239

Creating Excel files with Python and XisxWriter, Release 3.0.2

type

order (for polynomial trends)

period (for moving average)

forward (for all except moving average)

backward (for all except moving average)

name

line

intercept (for exponential, linear and polynomial only)
display equation (for all except moving average)

display r squared (for all except moving average)

The type property sets the type of trendline in the series:

chart.add series({
'values': '=Sheetl!A1:$A%$6",
'trendline': {'type': 'linear'},

}

The available trendline types are:

exponential
linear

log

moving average
polynomial
power

A polynomial trendline can also specify the order of the polynomial. The default value is 2:

chart.add series({
'values': '=Sheetl!A1:$A%6"',
"trendline': {
"type': 'polynomial',
'order': 3,
b
})

60

50

LN\ /

N/ /A

ol AN/ 2
/ N/

10 1

240 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

A moving average trendline can also specify the period of the moving average. The default
value is 2:

chart.add series({

'values': '=Sheetl!A1:$A%$6"',
"trendline': {
"type': 'moving average',

'period': 2,
3
})

60

N /
// NN/

30
/ / \ \ / —— 2 per. Mov. Avg. (Seriesl)

./ ANV

10

The forward and backward properties set the forecast period of the trendline:

chart.add series({
'values': '=Sheetl!A1:$A%6",
"trendline': {
"type': 'polynomial’,
'order': 2,
'"forward': 0.5,
'"backward': 0.5,
}
})

The name property sets an optional hame for the trendline that will appear in the chart legend.
If it isn’t specified the Excel default name will be displayed. This is usually a combination of the
trendline type and the series name:

chart.add series({
'values': '=Sheetl!A1:$A%$6",
"trendline': {
"type': 'polynomial’,
‘name': 'My trend name',
'order': 2,
}
})

18.4. Chart series option: Trendline 241

Creating Excel files with Python and XisxWriter, Release 3.0.2

The intercept property sets the point where the trendline crosses the Y (value) axis:

chart.add series({
'values': '=Sheetl!B1:$B%$6"',
"trendline': {'type': 'linear’,
"intercept': 0.8,
b
})

The display equation property displays the trendline equation on the chart:

chart.add series({
'values': '=Sheetl!B1:B6"',
"trendline': {'type': 'linear',
‘display equation': True,
b
})

The display r squared property displays the R squared value of the trendline on the chart:

chart.add series({
'values': '=Sheetl!B1:B6"',
"trendline': {'type': 'linear',
'display r squared': True,
b
})

Several of these properties can be set in one go:

chart.add series({
'values': '=Sheetl!A1:$A%6",
"trendline': {
"type': 'polynomial’,
'name': 'My trend name',
'order': 2,
'"forward': 0.5,
'"backward': 0.5,
'display equation': True,
'line': {
‘color': 'red',
'width': 1,
'dash type': 'long dash',
}

242 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

60

50

40 y =-0.5357x2 + 6.03§7x + 17

30 —f———=— s Seriesl
— — = My trend name
20 =

10

1 2 3 4 5 6

Trendlines cannot be added to series in a stacked chart or pie chart, doughnut chart, radar chart
or (when implemented) to 3D or surface charts.

18.5 Chart series option: Error Bars

Error bars can be added to a chart series to indicate error bounds in the data. The error bars can
be vertical y _error_bars (the most common type) or horizontal Xx_error_bars (for Bar and
Scatter charts only).

The following properties can be set for error bars in a chart series:

type

value (for all types except standard error and custom)
plus values (for custom only)

minus values (for custom only)

direction

end style

line

The type property sets the type of error bars in the series:

chart.add series({
'values': '=Sheetl!A1:$A%$6",
'y error bars': {'type': 'standard error'},

}

18.5. Chart series option: Error Bars 243

Creating Excel files with Python and XisxWriter, Release 3.0.2

70

60

© |
. //l \
Y Ny

=—=Seriesl

The available error bars types are available:

fixed

percentage
standard deviation
standard error
custom

All error bar types, except for standard _error and custom must also have a value associated
with it for the error bounds:

chart.add series({

'values': '=Sheetl!A1:$A%6",
'y error _bars': {
"type': 'percentage',
'value': 5,
b

}

The custom error bar type must specify plus values and minus_values which should either
by a Sheet1!A1: $A3$6 type range formula or a list of values:

chart.add series({

'categories': '=Sheetl!A1:$A%6",
'values': '=Sheetl1!B1:$B%$6"',
'y error bars': {
"type': ‘custom’,
'plus values': '=Sheetl!C1:C6',
'minus values': '=Sheetl!D1:D6',
3
})
or

chart.add series({
‘categories': '=Sheetl!A1:$A%6",

244 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

'values': '=Sheetl!B1:B6"',
'y error _bars': {
"type': ‘custom’,

'plus values': [1, 1, 1, 1, 1],
'minus values': [2, 2, 2, 2, 2],
3
})

Note, as in Excel the items in the minus_values do not need to be negative.
The direction property sets the direction of the error bars. It should be one of the following:

plus # Positive direction only.
minus # Negative direction only.
both # Plus and minus directions, The default.

The end _style property sets the style of the error bar end cap. The options are 1 (the default)
or 0 (for no end cap):

chart.add series({
'values': '=Sheetl!A1:$A%6",
'y error bars': {
"type': 'fixed',
'value': 2,
‘end style': 0O,
‘direction': 'minus'
b
})

60

. N\ /

o/ N\ [

wl/ N/
/ ~/

10 Il 1

18.6 Chart series option: Data Labels

Data labels can be added to a chart series to indicate the values of the plotted data points.

The following properties can be set for data labels formats in a chart:

18.6. Chart series option: Data Labels 245

Creating Excel files with Python and XisxWriter, Release 3.0.2

value
category
series name
position
leader lines
percentage
separator
legend key
num_format
font

border

fill
pattern
gradient
custom

The value property turns on the Value data label for a series:

60

50

40

30

20

10

chart.add series({

'values':

'data labels': {'value': True},

}

40

10

1 2

3

50

'=Sheetl!A1:%A%6",

4

5

10

6

50

=®=Series1

By default data labels are displayed in Excel with only the values shown. However, it is possible to

configure other display options, as shown below.

246

Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

Farmat Data Labels

Number Label contains
/@ Font = .
- Se
Text Box ries name
(&. Fill || Category name
\ Line
|| Shadow Value

[] Glow & Soft Edges Label options

f} 3-D Format
Label position: | Right

Separator: , [comma)

|| Show legend key next to label

L

Cancel

The category property turns on the Category Name data label for a series:

chart.add series({
'values': '=Sheetl!A1:$A%$6",
'data labels': {'category': True},
})

The series name property turns on the Series Name data label for a series:

chart.add series({
'values': '=Sheetl!A1:$A%$6",
'data labels': {'series name': True},

}

Here is an example with all three data label types shown:

18.6. Chart series option: Data Labels

247

Creating Excel files with Python and XisxWriter, Release 3.0.2

60

50

ies1, 3,50

/ Seriesl, 6, 50

40

/ N\

/

30

20

10 7

=®=Seriesl

The position property is used to position the data label for a series:

chart.add series({

'values': '=Sheetl!A1:$A%$6",
‘data labels': {'series name': True, 'position': 'above'},
})
60
50 50
50 o
0 N\ /
) / N\ /
30 / \ / =®=Seriesl
0
20
1% \1{
10 hd 4
0
1 2 3 4 5 6

In Excel the allowable data label positions vary for different chart types. The allowable positions

are:

248

Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

Position Line, Scatter, Stock | Bar, Column | Pie, Doughnut | Area, Radar
center Yes Yes Yes Yes*

right Yes*

left Yes

above Yes

below Yes

inside_base Yes

inside_end Yes Yes

outside end Yes* Yes

best_fit Yes*

Note: The * indicates the default position for each chart type in Excel, if a position isn’t specified
by the user.

The percentage property is used to turn on the display of data labels as a Percentage for a
series. In Excel the percentage data label option is only available for Pie and Doughnut chart
variants:

chart.add series({
'values':
'data labels':

'=Sheetl!A1:$A%$6",
{'percentage': True},

}

The leader lines property is used to turn on Leader Lines for the data label of a series. It is
mainly used for pie charts:

chart.add series({
‘values':
‘data_labels': {'value': True,

'=Sheetl!A1:$A%$6",
'leader lines': True},

}

Note: Even when leader lines are turned on they aren’t automatically visible in Excel or XI-
sxWriter. Due to an Excel limitation (or design) leader lines only appear if the data label is moved

manually or if the data labels are very close and need to be adjusted automatically.

18.6. Chart series option: Data Labels 249

Creating Excel files with Python and XisxWriter, Release 3.0.2

The separator property is used to change the separator between multiple data label items:

chart.add series({

'values': '=Sheetl!A1:$A%6"',
'data labels': {'value': True, 'category': True,
'series name': True, 'separator': "\n"},
b
60
Seriesl Seriesl
50 3 6
50 50
40
30 —®—Seriesl
Seriesl
20
Seriesl
10 T 5
10 10
0
1 2 3 4 5 6

The separator value must be one of the following strings:

1 1
’
[
’

1 1
1

1

\n'

The legend key property is used to turn on the Legend Key for the data label of a series:

chart.add series({
'values': '=Sheetl!A1:$A%$6",
‘data labels': {'value': True, 'legend key': True},

}

250 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

60

50 50

40 / =40 \ /

30 / \ / =®=Seriesl
20 =20

10 -M

The num_format property is used to set the number format for the data labels of a series:

chart.add series({

'values': '=Sheetl!A1:$A%$6",

‘data labels': {'value': True, 'num format': '#,##0.00'},
})

60

50 Au.uu /- $50.00
40 / $40.00 \ /
30 / \ / —®—Series1

20 $20.00
10 €-510.00 ©$—5$10.00

The number format is similar to the Worksheet Cell Format num_format apart from the fact that
a format index cannot be used. An explicit format string must be used as shown above. See
set num format() for more information

The font property is used to set the font of the data labels of a series:

chart.add series({
'values': '=Sheetl!A1:$A%6",
'data labels': {
'value': True,
"font': {'name': 'Consolas', 'color': 'red'}

},

18.6. Chart series option: Data Labels 251

Creating Excel files with Python and XisxWriter, Release 3.0.2

}

60

N
) / \) / Seriesl
/. NV,

10 10 10

The font property is also used to rotate the data labels of a series:

chart.add series({

'values': '=Sheetl!A1:$A%6",
‘data labels': {
'value': True,
"font': {'rotation': 45}
}
})

See Chart Fonts.
Standard chart formatting such as border and fill can also be added to the data labels:

chart.add series({

'values': '=Sheetl!A1:$A%$6",

'data labels': {'value': True,
'border': {'color': 'red'},
fill': {'color': 'yellow'}},

252 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

60
50
40
30 =8=Series1

20

10

The custom property is used to set properties for individual data labels. This is explained in detail
in the next section.

18.7 Chart series option: Custom Data Labels

The custom data label property is used to set the properties of individual data labels in a series.
The most common use for this is to set custom text or number labels:

custom labels = [

{'value': 'Jan'},
{'value': 'Feb'},
{'value': 'Mar'},

{'value': 'Apr'},
{'value': 'May'},
{'value': 'Jun'},

]

chart.add series({
'values': '=Sheetl!A1:$A%$6"',
‘data labels': {'value': True, 'custom': custom labels},

}

18.7. Chart series option: Custom Data Labels 253

Creating Excel files with Python and XisxWriter, Release 3.0.2

60
50 Mar tun
40 Feb

30 ====Seriesl

20 pr

10 tan May

-
[\]
w
IS
[
o

As shown in the previous examples th custom property should be a list of dicts. Any property dict
that is set to None or not included in the list will be assigned the default data label value:

custom labels = [

None,
{'value': 'Feb'},
{'value': 'Mar'},

{'value': 'Apr'},
]

chart.add series({
'values': '=Sheetl!A1:$A%6",
'data labels': {'value': True, 'custom': custom labels},

}

60
50 Mar 50
40 Feb

30 ====Seriesl

20 pr

10 10 10

-
N
w
IS
%
o

The property elements of the custom lists should be dicts with the following allowable keys/sub-
properties:

254 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

value
font
delete

The value property should be a string, number or formula string that refers to a cell from which
the value will be taken:

custom labels = [

{'value': '=Sheetl!C1'},
{'value': '=Sheetl!C2'},
{'value': '=Sheetl!C3'},
{'value': '=Sheetl!C4'},
{'value': '=Sheetl!C5'},
{'value': '=Sheetl!C6'},

]

The font property is used to set the font of the custom data label of a series:

custom labels = [

{'value': '=Sheetl!C1', 'font': {'color': 'red'}},
{'value': '=Sheetl!C2', 'font': {'color': 'red'}},
{'value': '=Sheetl!C3', 'font': {'color': 'red'}},
{'value': '=Sheetl1!C4', 'font': {'color': 'red'}},
{'value': '=Sheetl1!C5', 'font': {'color': 'red'}},
{'value': '=Sheetl!C6', 'font': {'color': 'red'}},

]

chart.add series({
'values': '=Sheetl!A1:$A%6",
'data labels': {'value': True, 'custom': custom labels},

}

See Chart Fonts for details on the available font properties.

60
50 Sep Bec
40 Aug

30 —Seriesl

20 Oct

10 tut Nov

The delete property can be used to delete labels in a series. This can be useful if you want to
highlight one or more cells in the series, for example the maximum and the minimum:

18.7. Chart series option: Custom Data Labels 255

Creating Excel files with Python and XisxWriter, Release 3.0.2

custom labels = [
None,
{'delete': True},
{'delete': True},
{'delete': True},
{'delete': True},
None,

]

chart.add series({
'values': '=Sheetl!A1:$A%6",
'data labels': {'value': True, 'custom': custom la

}

60
) /\ /)
40

L/ N/
ol /. ~/

bels},

Standard chart formatting such as border and fill can also be added to the custom data labels:

custom labels = [

{'value': 'Jan', 'border': {'color': 'blue'}},
{'value': 'Feb'},
{'value': 'Mar'},

{'value': 'Apr'},
{'value': 'May'},

{'value': '"Jun', 'fill': {'color': 'green'}},
]
chart.add series({

'values': '=Sheetl!A1:$A%$6",

'marker': {'type': 'circle'},

'data labels': {'value': True,
‘custom': custom labels,

'border': {'color': 'red'},
fill': {'color': 'yellow'}},
})
256 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

60

50

40

30

20

10

=8=Series1

18.8 Chart series option: Points

In general formatting is applied to an entire series in a chart. However, it is occasionally required
to format individual points in a series. In particular this is required for Pie/Doughnut charts where

each segment is represented by a point.

In these cases it is possible to use the points property of add series():

import xlsxwriter

workbook = xlsxwriter.Workbook('chart pie.xlsx")

worksheet = workbook.add worksheet()

chart = workbook.add chart({'type': 'pie'})

data = [
['Pass', 'Fail'l,
[90, 10],

]

worksheet.write column('Al', data[0])
worksheet.write column('B1l', data[l])

chart.add series({

'categories': '=Sheetl!A1:$A%$2',
'values': '=Sheetl1!B1:$B%$2"',
‘points': [

{'fill': {'color': 'green'}},
{'fill': {'color': 'red'}},
1,
})

worksheet.insert chart('C3', chart)

18.8. Chart series option: Points

257

Creating Excel files with Python and XisxWriter, Release 3.0.2

workbook.close()

W Pass

H Fail

The points property takes a list of format options (see the “Chart Formatting” section below). To
assign default properties to points in a series pass None values in the array ref:

Format point 3 of 3 only.
chart.add series({
'values': '=Sheetl!Al:A3',
'points’': [
None,
None,
{'fill': {'color': '#990000'}},
I,
})

Format point 1 of 3 only.
chart.add series({
'values': '=Sheetl!Al:A3',
'points': [
{'fill': {'color': '#990000'}},
]I
})

18.9 Chart series option: Smooth

The smooth option is used to set the smooth property of a line series. It is only applicable to the
line and scatter chart types:

chart.add series({

‘categories': '=Sheetl!A1:$A%6",
'values': '=Sheetl!B1:$B%$6"',
'smooth': True,

}

258 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

18.10 Chart Formatting

The following chart formatting properties can be set for any chart object that they apply to (and
that are supported by XlsxWriter) such as chart lines, column fill areas, plot area borders, markers,
gridlines and other chart elements:

line
border
fill
pattern
gradient

Chart formatting properties are generally set using dicts:

chart.add series({
'values': '=Sheetl!A1:$A%$6"',
'line': {'color': 'red'},

}

60

) N\ /
L/ / \\ // T
L/ ~/

10

In some cases the format properties can be nested. For example a marker may contain border
and fill sub-properties:

chart.add series({

'values': '=Sheetl!A1:$A%6",
'line': {'color': 'blue'},
'marker': {'type': 'square',
'size,': 5,
'border': {'color': 'red'},
fill': {'color': 'yellow'}
}

18.10. Chart Formatting 259

Creating Excel files with Python and XisxWriter, Release 3.0.2

) A\ /-
/ N\ /

./ N/ T
/ ~/

10 = T

18.11 Chart formatting: Line

The line format is used to specify properties of line objects that appear in a chart such as a plotted
line on a chart or a border.

The following properties can be set for Line formats in a chart:

none
color

width
dash_type
transparency

The none property is uses to turn the 1ine off (it is always on by default except in Scatter charts).
This is useful if you wish to plot a series with markers but without a line:

chart.add series({

'values': '=Sheetl!A1:$A%$6"',
'line': {'none': True},
‘marker': {'type': 'automatic'},

}

260 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

60

L 4
L 4

50

L 4

40

30 # Series1

L 4

20

L 4
L 4

10

The color property sets the color of the Line:

chart.add series({
'values': '=Sheetl!A1:A6"',
'"line': {'color': 'red'},

}

The available colors are shown in the main XlsxWriter documentation. It is also possible to set the
color of a line with a Html style #RRGGBB string or a limited number of named colors, see Working
with Colors:

chart.add series({

'values': '=Sheetl!A1:$A%6",
'line': {'color': '#FF9900'},
1)
60
50 —
40
30 Series1
20
10
0
1 2 3 4 5 6

The width property sets the width of the Line. It should be specified in increments of 0.25 of a
point as in Excel:

18.11. Chart formatting: Line 261

Creating Excel files with Python and XisxWriter, Release 3.0.2

chart.add series({
'values': '=Sheetl!A1:$A%$6"',
‘line': {'width': 3.25},

1)

The dash_type property sets the dash style of the line:

chart.add series({

‘values': '=Sheetl!A1:$A%6',
‘line': {'dash_type': 'dash dot'},
})
60
>0 N
” . 7/
40 - - p
’ \ .
30 ., '\ .I = =+ =Seriesl
20 7 ~ 7
‘o .
10 Y v
0 T
1 2 3 4 5 6

The following dash_type values are available. They are shown in the order that they appear in
the Excel dialog:

solid

round dot
square_dot

dash

dash dot

long dash

long dash dot
long dash dot dot

The default line style is solid.

The transparency property sets the transparency of the line color in the integer range 1 - 100.
The color must be set for transparency to work, it doesn’t work with an automatic/default color:

chart.add series({
'values': '=Sheetl!A1:$A%$6"',
‘line": {'color': 'yellow', 'transparency': 50},

}

More than one line property can be specified at a time:

262 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

chart.add series({

'values': '=Sheetl!A1:$A%$6"',
‘line': {

‘color': 'red',

'width': 1.25,

‘dash _type': 'square dot',
b
})

18.12 Chart formatting: Border

The border property is a synonym for Line.

It can be used as a descriptive substitute for Line in chart types such as Bar and Column that
have a border and fill style rather than a line style. In general chart objects with a border property
will also have a fill property.

18.13 Chart formatting: Solid Fill

The solid fill format is used to specify filled areas of chart objects such as the interior of a column
or the background of the chart itself.

The following properties can be set for fill formats in a chart:

none
color
transparency

The none property is used to turn the Til11l property off (it is generally on by default):

chart.add series({
'values': '=Sheetl!A1:$A%$6"',
fill': {'none': True},
'border': {'color': 'black'}
})

18.12. Chart formatting: Border 263

Creating Excel files with Python and XisxWriter, Release 3.0.2

60

50

40

30 OSeriesl

20

10

The color property sets the color of the fill area:

chart.add series({
'values': '=Sheetl!A1:$A%$6",
"fill': {'color': 'red'}

})

The available colors are shown in the main XlsxWriter documentation. It is also possible to set the
color of a fill with a Html style #RRGGBB string or a limited number of named colors, see Working
with Colors:

chart.add series({

'values': '=Sheetl!A1:$A%$6",
"fill': {'color': '#FF9900'}
})
60
50 —
40 —
30 o Seriesl
20 —
10 1 —
0
1 2 3 4 5 6

The transparency property sets the transparency of the solid fill color in the integer range 1
- 100. The color must be set for transparency to work, it doesn’t work with an automatic/default
color:

264 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

chart.set chartarea({'fill': {'color':

'yellow',

"transparency':

60

50

40

30

20

10

Seriesl

50}})

The fill format is generally used in conjunction with a border format which has the same
properties as a Line format:

chart.add series({
'values': '=Sheetl!A1:$A%6",

}

"fill':

{'color': 'red'},

'border': {'color': 'black'}

60

50

40

30

20

10

‘A

1

2 3 4 5 6

B Seriesl

18.14 Chart formatting: Pattern Fill

The pattern fill format is used to specify pattern filled areas of chart objects such as the interior of
a column or the background of the chart itself.

18.14. Chart formatting: Pattern Fill

265

Creating Excel files with Python and XisxWriter, Release 3.0.2

Cladding types

160
140

es

S
=
b
o

100 A
80 7
60 -
40
20

EShingle

Number of hou

BE Brick

Region

The following properties can be set for pattern fill formats in a chart:

pattern: the pattern to be applied (required)
fg color: the foreground color of the pattern (required)
bg color: the background color (optional, defaults to white)

For example:
chart.set plotarea({
'pattern': {
'pattern': 'percent 5',
'fg color': 'red’,

'bg color': 'yellow',
})

The following patterns can be applied:
* percent 5
* percent 10
* percent 20
* percent 25
* percent 30
* percent 40
* percent 50
* percent 60
* percent 70
* percent 75

* percent 80

266 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

* percent 90

« light downward diagonal
« light upward diagonal
« dark_downward diagonal
» dark upward_diagonal

» wide downward diagonal
« wide upward diagonal

« light vertical

« light horizontal

* narrow vertical

* narrow_horizontal

» dark vertical

« dark _horizontal

» dashed downward diagonal
» dashed upward diagonal
« dashed horizontal

« dashed vertical

« small confetti

* large confetti

« zigzag

* wave

« diagonal brick

« horizontal brick

* weave

* plaid

« divot

» dotted grid

» dotted diamond

« shingle

« trellis

» sphere

« small grid

18.14. Chart formatting: Pattern Fill 267

Creating Excel files with Python and XisxWriter, Release 3.0.2

large grid

small check

large check

outlined diamond

» solid diamond

The foreground color, fg color, is a required parameter and can be a Html style #RRGGBB string
or a limited number of named colors, see Working with Colors.

The background color, bg color, is optional and defaults to white.

If a pattern fill is used on a chart object it overrides the solid fill properties of the object.

18.15 Chart formatting: Gradient Fill

The gradient fill format is used to specify gradient filled areas of chart objects such as the interior
of a column or the background of the chart itself.

80

~
o

(=]

o

o

NoOWw bR UL O
(=]

o

Sample length (mm)

—
'k

=
o
!

o

2 3 4 5 6 7

Test number

The following properties can be set for gradient fill formats in a chart:

colors: a list of colors

positions: an optional list of positions for the colors
type: the optional type of gradient fill

angle: the optional angle of the linear fill

The colors property sets a list of colors that define the gradient:

chart.set plotarea({
'gradient': {'colors': ['#FFEFD1', '#FOEBD5', '#B69F66']}
})

268 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

Excel allows between 2 and 10 colors in a gradient but it is unlikely that you will require more than
2or 3.

As with solid or pattern fill it is also possible to set the colors of a gradient with a Html style
#RRGGBB string or a limited number of named colors, see Working with Colors:

chart.add series({
'values': '=Sheetl!A1:$A%6",
'gradient': {'colors': ['red', 'green']}

}

The positions defines an optional list of positions, between 0 and 100, of where the colors in
the gradient are located. Default values are provided for colors lists of between 2 and 4 but they
can be specified if required:

chart.add series({

'values': '=Sheetl!A1:$A%$6"',
‘gradient': {
‘colors': ['#DDEBCF', '#156B13'],
'positions': [10, 901,
}

}

The type property can have one of the following values:

linear (the default)
radial

rectangular

path

For example:
chart.add series({
'values': '=Sheetl!A1:$A%$6"',
'gradient': {
‘colors': ['#DDEBCF', '#9CB86E', '#156B13'],
‘type': 'radial’

})
If type isn’t specified it defaults to Linear.

For a Linear fill the angle of the gradient can also be specified:

chart.add series({

'values': '=Sheetl!A1:$A%$6"',
'gradient': {'colors': ['#DDEBCF', '#9CB86E', '#156B13'],
'angle': 45}

}

The default angle is 90 degrees.

If gradient fill is used on a chart object it overrides the solid fill and pattern fill properties of the
object.

18.15. Chart formatting: Gradient Fill 269

Creating Excel files with Python and XisxWriter, Release 3.0.2

18.16 Chart Fonts

The following font properties can be set for any chart object that they apply to (and that are sup-
ported by XlsxWriter) such as chart titles, axis labels, axis numbering and data labels:

name
size

bold
italic
underline
rotation
color

These properties correspond to the equivalent Worksheet cell Format object properties. See the
The Format Class section for more details about Format properties and how to set them.

The following explains the available font properties:

* name: Set the font name:

chart.set x axis({'num font': {'name': 'Arial'}})

size: Set the font size:

chart.set x axis({'num font': {'name': 'Arial', 'size': 9}})

bold: Set the font bold property:

chart.set x axis({'num font': {'bold': True}})

italic: Set the font italic property:

chart.set x axis({'num font': {'italic': True}})

underline: Set the font underline property:
chart.set x axis({'num font': <{'underline': True}})
rotation: Set the font rotation, angle, property in the integer range -90 to 90 deg, and
270-271 deg:
chart.set x axis({'num font': {'rotation': 45}})
The font rotation angle is useful for displaying axis data such as dates in a more compact
format.
There are 2 special case angles outside the range -90 to 90:
— 270: Stacked text, where the text runs from top to bottom.
— 271: A special variant of stacked text for East Asian fonts.

color: Set the font color property. Can be a color index, a color name or HTML style RGB
color:

270

Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

chart.set x axis({'num font': {'color': 'red' }})
chart.set y axis({'num font': {'color': '#92D050'}})

Here is an example of Font formatting in a Chart program:

chart.set title({

'name': 'Test Results',
‘name_font': {
'name': 'Calibri’',
‘color': 'blue',
3
1)
chart.set x axis({
'name': 'Month',
'name_font': {
'name': 'Courier New',
'color': '#92D050'
3
‘num_font': {
'name': 'Arial’,
'color': '#00BOFO',
}
})
chart.set y axis({
"'name': 'Units',
‘name_font': {
‘name': 'Century’,
‘color': 'red'
}

"num_font': {
'bold': True,
"italic': True,
'underline': True,
"color': '#7030A0',
3

})

chart.set legend({'font': {'bold': 1, "italic': 1}})

18.16. Chart Fonts 271

Creating Excel files with Python and XisxWriter, Release 3.0.2

Test Results

|0\
o

)

Units
818

S
N

=
o IS

o Seriesl

18.17 Chart Layout

The position of the chart in the worksheet is controlled by the set size() method.

It is also possible to change the layout of the following chart sub-objects:

plotarea
legend

title

X_axis caption
y axis caption

Here are some examples:

chart.set plotarea({

"layout': {
X' 0.13,
'y': 0.26,
'width': 0.73,
'height': 0.57,
}
})
chart.set legend({
'layout': {
"x': 0.80,
'y': 0.37,
'width': 0.12,
"height': 0.25,
}
})
chart.set title({
"name"’: 'Title',

272

Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

'overlay': True,

‘layout': {
'x': 0.42,
'y': 0.14,
}
})
chart.set x axis({
"name': 'X axis',
'name_ layout': {
'x': 0.34,
'y': 0.85,
}

})

See set plotarea(), set legend(), set title() and set x axis(),

Note: It is only possible to change the width and height for the plotarea and Legend objects.
For the other text based objects the width and height are changed by the font dimensions.

The layout units must be a float in the range @ < x <= 1 and are expressed as a percentage of
the chart dimensions as shown below:

-

- >
‘ ‘ | H
w

w

From this the layout units are calculated as follows:

layout:
X =a /W
y =b /H
width =w / W
height = h / H

These units are cumbersome and can vary depending on other elements in the chart such as text
lengths. However, these are the units that are required by Excel to allow relative positioning. Some
trial and error is generally required.

18.17. Chart Layout 273

Creating Excel files with Python and XisxWriter, Release 3.0.2

Note: The plotarea origin is the top left corner in the plotarea itself and does not take into
account the axes.

18.18 Date Category Axes

Date Category Axes are category axes that display time or date information. In XisxWriter Date
Category Axes are set using the date axis optionin set x axis() orset y axis():

chart.set x axis({'date axis': True})

In general you should also specify a number format for a date axis although Excel will usually
default to the same format as the data being plotted:

chart.set x axis({
‘date axis': True,
'num_format': 'dd/mm/yyyy',
}

Excel doesn’t normally allow minimum and maximum values to be set for category axes. However,
date axes are an exception. The min and max values should be set as Excel times or dates:

chart.set x axis({
'date axis': True,
'min': date(2013, 1, 2),
‘'max': date(2013, 1, 9),
'num_format': 'dd/mm/yyyy',
})

For date axes it is also possible to set the type of the major and minor units:

chart.set x axis({

'date axis': True,

'minor unit': 4,

‘minor _unit type': 'months’,
‘major_unit': 1,
‘major_unit type': 'years',
'num_ format': ‘dd/mm/yyyy"',

}

See Example: Date Axis Chart.

18.19 Chart Secondary Axes

It is possible to add a secondary axis of the same type to a chart by setting the y2_axis or
X2_axis property of the series:

import xlsxwriter

workbook = xlsxwriter.Workbook('chart secondary axis.xlsx')

274 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

worksheet = workbook.add worksheet()

data = [

[2, 3, 4, 5, 6, 71,

[10, 40, 50, 20, 10, 501,
]

worksheet.write column('A2', data[0])
worksheet.write column('B2', data[l])

chart = workbook.add chart({'type': 'line'})

Configure a series with a secondary axis.
chart.add series({

'values': '=Sheetl!A2:$A%$7",

'y2 axis': True,
})
Configure a primary (default) Axis.
chart.add series({

'values': '=Sheetl!B2:B7"',
})

chart.set legend({'position': 'none'})

chart.set y axis({'name': 'Primary Y axis'})
chart.set y2 axis({'name': 'Secondary Y axis'})

worksheet.insert chart('D2', chart)

workbook.close()

[=)]
o
co

o~ 7

/\ / [®

/S >]
/[— N [/ L
7 ~/

[%a)
o

=3
o

Primary Y axis
w
o

.
Secondary Y axis

]
o

=
(=]

(=]
o

It is also possible to have a secondary, combined, chart either with a shared or secondary axis,
see below.

18.19. Chart Secondary Axes 275

Creating Excel files with Python and XisxWriter, Release 3.0.2

18.20 Combined Charts

It is also possible to combine two different chart types, for example a column and line chart to
create a Pareto chart using the Chart combine () method:

Reasons for lateness

e W too%

[80.0%

[y
o3
o

[y
o
o

80
[60.0%

o /
r 40.0%
,I,.,--t

40
[20.0%

20

Respondents (number)

r 0.0%
Traffic Child care Public Weather Overslept Emergency
Transport

The combined charts can share the same Y axis like the following example:

Usual setup to create workbook and add data...

Create a new column chart. This will use this as the primary chart.
column_chart = workbook.add chart({'type': 'column'})

Configure the data series for the primary chart.
column_chart.add series({

‘name' : '=Sheetl!B1"',
'categories': '=Sheetl!A2:A7',
'values': '=Sheetl!B2:B7"',

}

Create a new column chart. This will use this as the secondary chart.
line chart = workbook.add chart({'type': 'line'})

Configure the data series for the secondary chart.
line chart.add series({

‘name’: '=Sheetl!C1l"',
'categories': '=Sheetl!A2:A7',
'values': '=Sheetl1!C2:C7"',

}

Combine the charts.
column_chart.combine(line chart)

Add a chart title and some axis labels. Note, this is done via the
primary chart.

column_chart.set title({ 'name': 'Combined chart - same Y axis'})
column_chart.set x axis({'name': 'Test number'})

276

Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

column _chart.set y axis({'name': 'Sample length (mm)"'})

Insert the chart into the worksheet
worksheet.insert chart('E2', column_chart)

Combined chart - same Y axis

80
—= 70
£ /\
£ 60
= 50 / \
%a 40 / o
% 20 / = Batch 1
E 20 l s Batch 2
“ 10

o | 1l , H B

2 3 4 5 6 7

Test number

The secondary chart can also be placed on a secondary axis using the methods shown in the
previous section.

In this case it is just necessary to add a y2 axis parameter to the series and, if required, add a
title using set y2 axis (). The following are the additions to the previous example to place the
secondary chart on the secondary axis:

...
line chart.add series({
"name': '=Sheetl!Cl"',
'categories': '=Sheetl!A2:A7',
'values': '=Sheetl1!C2:C7"',
'y2 axis': True,
})
Add a chart title and some axis labels.
...
column_chart.set y2 axis({'name': 'Target length (mm)"'})

18.20. Combined Charts 277

Creating Excel files with Python and XisxWriter, Release 3.0.2

Combine chart - secondary Y axis

=3}
(=]

80
- 70
60
50
40
- 30
- 20
10
=0

[=]

. Batch 1

Batch 2

Sample length (mm)
= N W B !
o o

Target length (mm)

o o o

Test number

The examples above use the concept of a primary and secondary chart. The primary chart is the
chart that defines the primary X and Y axis. It is also used for setting all chart properties apart
from the secondary data series. For example the chart title and axes properties should be set via
the primary chart.

See also Example: Combined Chart and Example: Pareto Chart for more detailed examples.
There are some limitations on combined charts:

* Only two charts can be combined.

 Pie charts cannot currently be combined.

+ Scatter charts cannot currently be used as a primary chart but they can be used as a sec-
ondary chart.

» Bar charts can only combined secondary charts on a secondary axis. This is an Excel
limitation.

18.21 Chartsheets

The examples shown above and in general the most common type of charts in Excel are embed-
ded charts.

However, it is also possible to create “Chartsheets” which are worksheets that are comprised of a
single chart:

278 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.0.2

| chartsheet.xlsx

3 8 & (= fx

Results of sample analysis

4 4 & K l Sheﬂl_i Chl.l'lll

Mormal View

See The Chartsheet Class for details.

18.22 Charts from Worksheet Tables

Charts can by created from Worksheet Tables. However, Excel has a limitation where the data
series name, if specified, must refer to a cell within the table (usually one of the headers).

To workaround this Excel limitation you can specify a user defined name in the table and refer to
that from the chart:

import xlsxwriter
workbook = xlsxwriter.Workbook('chart pie.xlsx")
worksheet = workbook.add worksheet()
data = [
['Apple', 60],

['Cherry', 30],
['Pecan', 1017,

18.22. Charts from Worksheet Tables 279

Creating Excel files with Python and XisxWriter, Release 3.0.2

worksheet.add table('Al:B4', {'data': data,
‘columns': [{'header': 'Types'},
{'header': 'Number'}]}
)

chart = workbook.add chart({'type': 'pie'})

chart.add series({

"name': '=Sheetl!$A%$1"',
'categories': '=Sheetl!A2:$A%$4"',
'values': '=Sheetl1!B2:$B%$4"',

}

worksheet.insert chart('D2', chart)

workbook.close()

18.23 Chart Limitations

The following chart features aren’t supported in XisxWriter:
+ 3D charts and controls

» Bubble, Surface or other chart types not listed in The Chart Class.

18.24 Chart Examples

See Chart Examples.

280 Chapter 18. Working with Charts

CHAPTER
NINETEEN

WORKING WITH OBJECT POSITIONING

XlsxWriter positions worksheet objects such as images, charts and textboxes in worksheets by
calculating precise co-ordinates based on the object size, it's DPI (for images) and any scaling
that the user specifies. It also takes into account the heights and widths of the rows and columns
that the object crosses. In this way objects maintain their original sizes even if the rows or columns
underneath change size or are hidden.

For example:

import xlsxwriter

workbook = xlsxwriter.Workbook('image.xlsx")
worksheet = workbook.add worksheet()
worksheet.insert image('B2', 'logo.png')
worksheet.insert image('E8', 'logo.png"')

worksheet.set column('F:F', 2)

worksheet.set row(9, None, None, {'hidden': True})

workbook.close()

281

Creating Excel files with Python and XisxWriter, Release 3.0.2

oC® [image.xlsx

| # Home | Layout | Tables | Charts | SmartArt |})| v $Fv
A20 20 & (=~ fx| v

& A W RN Y N

1

2

BN python

—— powered

| 6

| 7 |

&

o ﬂ python

11

13 | pGWEFEd

13

14

15

16
<« » » [sheet1 |+ |
Mormal View Ready &

As can be seen the inserted image sizes are the same even though the second image crosses
changed rows and columns.

However, there are two cases where the image scale may change with row or columns changes.
These are explained in the next two sections.

19.1 Object scaling due to automatic row height adjustment

The scaling of a image may be affected if is crosses a row that has its default height changed due
to a font that is larger than the default font size or that has text wrapping turned on. In these cases
Excel will automatically calculate a row height based on the text when it loads the file. Since this
row height isn’t available to XlsxWriter when it creates the file the object may appear as if it is sized
incorrectly. For example:

import xlsxwriter

workbook = xlsxwriter.Workbook('image.xlsx")

worksheet = workbook.add worksheet()

wrap_format = workbook.add format({'text wrap': True})

worksheet.write('A9', 'Some text that wraps', wrap_format)

282 Chapter 19. Working with Object Positioning

Creating Excel files with Python and XlsxWriter, Release 3.0.2

worksheet.insert image('B2', 'logo.png"')
worksheet.insert image('B8', 'logo.png')

workbook.close()

| NON ™ image.xlsx
A Home | Layout Tables | Charts | SmartArt | 3 v LB~
A20 0 & (- E
T_II_-._IIiIfCII:nIEIFIfalH:
. python
2 powered
5
7
8
T;:etext pqthon
9 |wraps
10 powered
11
12
13
“
e e [

| Hormal Wlew | Ready P

As can be seen the second inserted image is distorted, compared to the first, due to the row being
scaled automatically. To avoid this you should explicitly set the height of the row using set row()
if it crosses an inserted object.

19.2 Object Positioning with Cell Moving and Sizing

Excel supports three options for “Object Positioning” within a worksheet:

19.2. Object Positioning with Cell Moving and Sizing 283

Creating Excel files with Python and XisxWriter, Release 3.0.2

Foermat Picture

A Fil
%\ Line Object positioning
|| Shadow | Move and size with cells
() Glow & Soft Edges © Move but don't size with cells
=y i -
- Reflection Don't move or size with cells
| 3-D Format
@ 3-D Rotation
Adjust Picture Print object
[&| Artistic Filters Locked
Crop Lock text
Text Box
|&” Size .))
= . Locking objects has no effect unless the sheet is protected. To protect the sheet,
choose Protection from the Tools menu, and then choose Protect Sheet. A password is
1) Alt Text optional.

Image, chart and textbox objects in XlsxWriter emulate these options using the ob-
ject position parameter:

worksheet.insert _image('B3', 'python.png', {'object position': 1})

Where object position has one of the following allowable values:
1. Move and size with cells.
2. Move but don’t size with cells.
3. Don’t move or size with cells.
4

. Same as Option 1 to “move and size with cells” except XlsxWriter applies hidden cells after
the object is inserted.

284 Chapter 19. Working with Object Positioning

Creating Excel files with Python and XlsxWriter, Release 3.0.2

Option 4 appears in Excel as Option 1. However, the worksheet object is sized to take hidden
rows or columns into account. This allows the user to hide an image in a cell, possibly as part of
an autofilter. For example:

import xlsxwriter

workbook = xlsxwriter.Workbook('image.xlsx")
worksheet = workbook.add worksheet()

worksheet.insert image('B2', 'logo.png')
worksheet.insert image('B9', 'logo.png', {'object position': 4})

Hide some rows.
for row in range(1l, 13):
worksheet.set row(row, None, None, {'hidden': True})

workbook.close()

[NN [image.xlsx
l #A Home | Layout | Tables | Charts | SmartArt | »| v L~
A31 108 (= f 2
I &, [N NN FONS T NN T N - N—— — ——— -

python

powered

[« < > ri JJ sheets [+ I I

Mormal View Ready S

In this example the first inserted image is visible over the hidden rows whilst the second image is
hidden with the rows. Unhiding the rows in Excel would reveal the second image.

19.2. Object Positioning with Cell Moving and Sizing 285

Creating Excel files with Python and XisxWriter, Release 3.0.2

19.3 Image sizing and DPI

When an image is imported into Excel the DPI (dots per inch) resolution of the image is taken
into account. Excel sizes the image according to a base DPI of 96. Therefore an image with a
DPI of 72 may appear slightly larger when imported into Excel while an image with a DPI of 200
may appear twice as small. XIsxWriter also reads the DPI of the images that the user inserts
into a worksheet and stores the image dimensions in the same way that Excel does. If it cannot
determine the DPI of the image it uses a default of 96.

19.4 Reporting issues with image insertion

A lot of work has gone into ensuring that XisxWriter inserts images into worksheets in exactly the
same way that Excel does, even though the required calculations and units are arcane. There
are over 80 test cases that check image insertion against files created in Excel to ensure that
XIsxWriter's handling of images is correct.

As such, before reporting any issues with image handling in XlsxWriter please check how the
same image is handled in Excel (not OpenOffice, LibreOffice or other third party applications). If
you do report an issue please use the XisxWriter Issue tracker is on GitHub and attach the image
that demonstrates the issue.

286 Chapter 19. Working with Object Positioning

https://github.com/jmcnamara/XlsxWriter/issues

CHAPTER
TWENTY

WORKING WITH AUTOFILTERS

An autofilter in Excel is a way of filtering a 2D range of data based on some simple criteria.

8 00 I autofilter.xlsx
Home | Layout | Tables | Charts | Smartart | M| v Lt~
Al 1 € & (- fx| Region |~
_| : B | C | D [— =
Region | Item Evolume |E| Month |E|
2 |East Apple 9000 July
3 |East Apple 5000 July
4 |South Orange 9000 September
3 |Morth Apple 2000 MNovember
B |West Apple 9000 November
7 |South Pear 7000 Cctober
8 |MNorth Pear 9000 August
9 |West Orange 1000 December
10 West Grape 1000 November
11 |South Pear 10000 April
12 'West Grape 6000 January
— h:a 4 » .b-l l ihutli Sher_tE_J Shuti_i” II
ormal View Ready o

20.1 Applying an autofilter

The first step is to apply an autofilter to a cell range in a worksheet using the autofilter()
method:

worksheet.autofilter('A1:D11")

287

Creating Excel files with Python and XisxWriter, Release 3.0.2

As usual you can also use Row-Column notation:

worksheet.autofilter(0, 0, 10, 3) # Same as above.

20.2 Filter data in an autofilter

The autofilter() defines the cell range that the filter applies to and creates drop-down se-
lectors in the heading row. In order to filter out data it is necessary to apply some criteria to the
columns using either the filter column() or filter column list() methods.

The filter column method is used to filter columns in a autofilter range based on simple crite-
ria:

worksheet.filter column('A', 'x > 2000")
worksheet.filter column('B', 'x > 2000 and x < 5000")

It isn’t sufficient to just specify the filter condition. You must also hide any rows that don’t match the
filter condition. Rows are hidden using the set row() hidden parameter. XLsxWriter cannot
filter rows automatically since this isn’t part of the file format.

The following is an example of how you might filter a data range to match an autofilter criteria:

Set the autofilter.
worksheet.autofilter('A1:D51")

Add the filter criteria. The placeholder "Region" in the filter is
ignored and can be any string that adds clarity to the expression.
worksheet.filter column(0, 'Region == East')

Hide the rows that don't match the filter criteria.
row = 1
for row data in (data):

region = row data[0]

Check for rows that match the filter.

if region == 'East':
Row matches the filter, display the row as normal.
pass

else:

We need to hide rows that don't match the filter.
worksheet.set row(row, options={'hidden': True})

worksheet.write row(row, 0, row data)

Move on to the next worksheet row.
row += 1

288 Chapter 20. Working with Autofilters

Creating Excel files with Python and XlsxWriter, Release 3.0.2

20.3 Setting a filter criteria for a column

The filter column() method can be used to filter columns in a autofilter range based on
simple conditions:

worksheet.filter column('A', 'x > 2000")

The column parameter can either be a zero indexed column number or a string column name.
The following operators are available for setting the filter criteria:

Operator

and
or

An expression can comprise a single statement or two statements separated by the and and or
operators. For example:

'X < 2000'
'x > 2000'
'X == 2000'
'X > 2000 and x < 5000'
'X == 2000 or x == 5000'

Filtering of blank or non-blank data can be achieved by using a value of Blanks or NonBlanks
in the expression:

'x == Blanks'
'x == NonBlanks'

Excel also allows some simple string matching operations:

'X == b*' # begins with b

'X 1= b*' # doesn't begin with b
'X == *p' # ends with b

'X I= *p' # doesn't end with b
'X == *p*' # contains b

'x = *p*! # doesn't contain b

You can also use '*’ to match any character or number and ’'?’ to match any single character
or number. No other regular expression quantifier is supported by Excel’s filters. Excel’s regular
expression characters can be escaped using '~"'.

The placeholder variable X in the above examples can be replaced by any simple string. The
actual placeholder name is ignored internally so the following are all equivalent:

20.3. Setting a filter criteria for a column 289

Creating Excel files with Python and XisxWriter, Release 3.0.2

'X < 2000’
"col < 2000’
'Price < 2000'

A filter condition can only be applied to a column in a range specified by the autofilter()
method.

20.4 Setting a column list filter

Prior to Excel 2007 it was only possible to have either 1 or 2 filter conditions such as the ones
shown above in the filter column() method.

Excel 2007 introduced a new list style filter where it is possible to specify 1 or more ‘or’ style
criteria. For example if your column contained data for the months of the year you could filter the
data based on certain months:

290 Chapter 20. Working with Autofilters

Creating Excel files with Python and XlsxWriter, Release 3.0.2

[] Maonith
Sort

24 Ascending 2} Descending
By colour:
Filter

By colour:

Choose One M

[Q

B (Select All)
@ April
August
December
February
January
July
June
March
May
Movember
October
September

Auto Apply

Clear Filter

The filter column list() method can be used to represent these types of filters:

worksheet.filter column list('A‘, ['March', "April', 'May'l])

One or more criteria can be selected:

worksheet.filter column list('A', ['March'])
worksheet.filter column list('B', [100, 110, 120, 130])

To filter blanks as part of the list use Blanks as a list item:

worksheet.filter column list('A', ['March', 'April', 'May', 'Blanks'l])

As explained above, it isn’t sufficient to just specify filters. You must also hide any rows that don’t
match the filter condition.

20.4. Setting a column list filter 291

Creating Excel files with Python and XisxWriter, Release 3.0.2

20.5 Example

See Example: Applying Autofilters for a full example of all these features.

292 Chapter 20. Working with Autofilters

CHAPTER
TWENTYONE

WORKING WITH DATA VALIDATION

Data validation is a feature of Excel which allows you to restrict the data that a user enters in a cell
and to display associated help and warning messages. It also allows you to restrict input to values
in a dropdown list.

A typical use case might be to restrict data in a cell to integer values in a certain range, to provide
a help message to indicate the required value and to issue a warning if the input data doesn’t meet
the stated criteria. In XlsxWriter we could do that as follows:

worksheet.data validation('B25', {'validate': 'integer',
'criteria': 'between',
'minimum': 1,
"'maximum': 100,
"input title': 'Enter an integer:',
"input message': 'between 1 and 100'})

293

Creating Excel files with Python and XisxWriter, Release 3.0.2

|80 0 __ data validate.xlsx

Home Layout | Tables Charts SmartArt b5 I -

B3 1+ @ 9 (= &7
A

Enter values in

Some examples of data validation in XlsxWriter this column

Enter an integer between 1 and 10 j?

Enter an integer that is not between 1 and 10 (using cell references)

Enter an integer greater than 0

Enter an integer less than 10

Enter a decimal between 0.1 and 0.5

...... ARG ELVEY

Mormal View

If the user inputs a value that doesn’t match the specified criteria an error message is displayed:

294 Chapter 21. Working with Data Validation

Creating Excel files with Python and XlsxWriter, Release 3.0.2

® @ data_validate.xlsx
| # Home | Layout | Tables | Charts SmartArt | 3N W e 2
B3 | QB (= fx| 12 R
- A B =
Enter values in
Some examples of data validation in XlsxWriter
this eolumn
Enter an integer between 1 and 10 | 12)
I

The value to be entered must be a whole
number between 1 and 10.

Cancel

EEIMPRERN .

For more information on data validation see the Microsoft support article “Description and exam-
ples of data validation in Excel”: http:/support.microsoft.com/kb/211485.

The following sections describe how to use the data validation() method and its various
options.

21.1 data_validation()

The data validation() method is used to construct an Excel data validation.

The data validation can be applied to a single cell or a range of cells. As usual you can use A1 or
Row/Column notation, see Working with Cell Notation.

With Row/Column notation you must specify all four cells in the range: (first row,
first col, last row, last col). If you need to refer to a single cell set the /ast_val-
ues equal to the first_ values. With A1 notation you can refer to a single cell or a range of cells:

worksheet.data validation(0, 0, 4, 1, {...})
worksheet.data validation('Bl"', {...})
worksheet.data validation('CLl:E5"', {...})

The options parameter in data_validation() must be a dictionary containing the parameters
that describe the type and style of the data validation. The main parameters are:

21.1. data_validation() 295

http://support.microsoft.com/kb/211485

Creating Excel files with Python and XisxWriter, Release 3.0.2

validate
criteria
value minimum | source
maximum
ignore blank
dropdown
input title
input message
show input
error_title
error_message
error_type
show error

These parameters are explained in the following sections. Most of the parameters are optional,
however, you will generally require the three main options validate, criteria and value:

worksheet.data validation('Al', {'validate': 'integer',
'criteria': '>',
'value': 100})

21.1.1 validate

The validate parameter is used to set the type of data that you wish to validate:

worksheet.data validation('Al', {'validate': 'integer',

'criteria': '>"',
'value': 100})

It is always required and it has no default value. Allowable values are:

integer
decimal
list
date
time
length
custom
any

* integer: restricts the cell to integer values. Excel refers to this as ‘whole number’.
» decimal: restricts the cell to decimal values.

« list: restricts the cell to a set of user specified values. These can be passed in a Python list
or as an Excel cell range.

+ date: restricts the cell to date values specified as a datetime object as shown in Working
with Dates and Time or a date formula.

« time: restricts the cell to time values specified as a datetime object as shown in Working
with Dates and Time or a time formula.

296 Chapter 21. Working with Data Validation

Creating Excel files with Python and XlsxWriter, Release 3.0.2

* length: restricts the cell data based on an integer string length. Excel refers to this as “Text
length’.

» custom: restricts the cell based on an external Excel formula that returns a TRUE/FALSE
value.

* any: is used to specify that the type of data is unrestricted. It is mainly used for specifying
cell input messages without a data validation.

21.1.2 criteria

The criteria parameter is used to set the criteria by which the data in the cell is validated. It is
almost always required except for the List, custom and any validate options. It has no default
value:

worksheet.data validation('Al', {'validate': 'integer',
'criteria': '>
'value': 100})

1
’

Allowable values are:

between

not between

equal to ==
not equal to =
greater than >
less than <
greater than or equal to | >=
less than or equal to <=

You can either use Excel’s textual description strings, in the first column above, or the more com-
mon symbolic alternatives. The following are equivalent:

worksheet.data validation('Al', {'validate': 'integer',
'criteria': '>',
'value': 100})

worksheet.data validation('Al', {'validate': 'integer',
‘criteria': 'greater than',
'value': 100})

The list, custom and any validate options don’t require a criteria. If you specify one it will
be ignored:

worksheet.data validation('B13', {'validate': 'list’',

'source': ['open', 'high', 'close'l})
worksheet.data validation('B23', {'validate': 'custom',
'value': '=AND(F5=50,G5=60)"'})

21.1. data_validation() 297

Creating Excel files with Python and XisxWriter, Release 3.0.2

21.1.3 value, minimum, source

The value parameter is used to set the limiting value to which the criteria is applied. It is
always required and it has no default value. You can also use the synonyms minimum or source
to make the validation a little clearer and closer to Excel’s description of the parameter:

Using 'value'.

worksheet.data validation('Al', {'validate': 'integer',
‘criteria': 'greater than',
'value': 100})

Using 'minimum'.

worksheet.data validation('B11l', {'validate': 'decimal',
'criteria': 'between',
'minimum': 0.1,
"'maximum': 0.5})

Using 'source'.
worksheet.data validation('B10', {'validate': 'list’',
'source': '=E4:$G%$4'})

Using 'source' with a string list.
worksheet.data validation('B13', {'validate': 'list"',
'source': ['open', 'high', 'close']})

Note, when using the 1ist validation with a list of strings, like in the last example above, Excel
stores the strings internally as a Comma Separated Variable string. The total length for this string,
including commas, cannot exceed the Excel limit of 255 characters. For longer sets of data you
should use a range reference like the prior example above.

21.1.4 maximum

The maximum parameter is used to set the upper limiting value when the criteria is either
"between’ or 'not between’:

worksheet.data validation('B11l', {'validate': 'decimal',
'criteria': 'between',
'minimum': 0.1,
"'maximum': 0.5})

21.1.5 ignore_blank

The ignore blank parameter is used to toggle on and off the ‘Ignore blank’ option in the Excel
data validation dialog. When the option is on the data validation is not applied to blank data in the
cell. 1t is on by default:

worksheet.data validation('B5', {'validate': 'integer',
'criteria': 'between',
'minimum': 1,
"'maximum': 10,

298 Chapter 21. Working with Data Validation

Creating Excel files with Python and XlsxWriter, Release 3.0.2

‘ignore blank': False,

})

21.1.6 dropdown

The dropdown parameter is used to toggle on and off the ‘In-cell dropdown’ option in the Excel
data validation dialog. When the option is on a dropdown list will be shown for 1ist validations. It
is on by default.

21.1.7 input_title

The input title parameter is used to set the title of the input message that is displayed when
a cell is entered. It has no default value and is only displayed if the input message is displayed.
See the input _message parameter below.

The maximum title length is 32 characters.

21.1.8 input_message

The input _message parameter is used to set the input message that is displayed when a cell is
entered. It has no default value:

worksheet.data validation('B25', {'validate': 'integer',
'criteria': 'between',
'minimum': 1,
"maximum': 100,
"input_title': 'Enter an integer:',
"input message': 'between 1 and 100'})

The input message generated from the above example is:

21.1. data_validation() 299

Creating Excel files with Python and XisxWriter, Release 3.0.2

®_@® data_validate.xlsx
Home Layout Tables Charts SmartArt » v B
B25 |4 fx| 55 ' ' »
| B | C D E F

22
23
24

25 | 55

26
Enter an integer:
27 between 1 and 100

28
29
30
31
32
33

> A I -
Sheetl J +,.|
Mormal View

Ready A

The message can be split over several lines using newlines. The maximum message length is 255
characters.

21.1.9 show_input

The show input parameter is used to toggle on and off the ‘Show input message when cell is
selected’ option in the Excel data validation dialog. When the option is off an input message is not
displayed even if it has been set using input_message. It is on by default.

21.1.10 error _title

The error_title parameter is used to set the title of the error message that is displayed when
the data validation criteria is not met. The default error title is ‘Microsoft Excel’. The maximum title
length is 32 characters.

21.1.11 error_message

The error_message parameter is used to set the error message that is displayed when a cell is
entered. The default error message is “The value you entered is not valid. A user has restricted
values that can be entered into the cell.”. A non-default error message can be displayed as follows:

300 Chapter 21. Working with Data Validation

Creating Excel files with Python and XlsxWriter, Release 3.0.2

worksheet.data validation('B27', {'validate': 'integer',
'criteria': 'between',
'minimum': 1,
"'maximum': 100,

"input title': 'Enter an integer:',

"input message': 'between 1 and 100°',

'error_title': 'Input value not valid!',

'error message': 'It should be an integer between 1

Which give the following message:

Input value is not valid!

It should be an integer between 1 and 100

Cancel ﬁ

The message can be split over several lines using newlines. The maximum message length is 255
characters.

21.1.12 error_type

The error_type parameter is used to specify the type of error dialog that is displayed. There
are 3 options:

'stop’

'warning’
"information'

The defaultis 'stop’.

21.1.13 show_error

The show_error parameter is used to toggle on and off the ‘Show error alert after invalid data is
entered’ option in the Excel data validation dialog. When the option is off an error message is not
displayed even if it has been set using error_message. It is on by default.

21.1. data_validation() 301

Creating Excel files with Python and XisxWriter, Release 3.0.2

21.2 Data Validation Examples

Example 1. Limiting input to an integer greater than a fixed value:

worksheet.data validation('Al', {'validate': 'integer',
'criteria': '>"',
'value': 0,
})

Example 2. Limiting input to an integer greater than a fixed value where the value is referenced
from a cell:

worksheet.data validation('A2', {'validate': 'integer',
'criteria': '>"',
'value': '=E3"',
1)

Example 3. Limiting input to a decimal in a fixed range:

worksheet.data validation('A3', {'validate': 'decimal',
'criteria': 'between',
'minimum': 0.1,
"'maximum': 0.5,

}

Example 4. Limiting input to a value in a dropdown list:
worksheet.data validation('A4', {'validate': 'list"',
'source': ['open', 'high', 'close'l],

}

Example 5. Limiting input to a value in a dropdown list where the list is specified as a cell range:

worksheet.data validation('A5', {'validate': 'list"',
'source': '=E4:$G%$4"',
1)

Example 6. Limiting input to a date in a fixed range:

from datetime import date

worksheet.data validation('A6', {'validate': 'date',
'criteria': 'between',
'minimum': date(2013, 1, 1),
"maximum': date(2013, 12, 12),

})
Example 7. Displaying a message when the cell is selected:
worksheet.data validation('A7', {'validate': 'integer',
'criteria': 'between',

'minimum': 1,
"'maximum': 100,

302 Chapter 21. Working with Data Validation

Creating Excel files with Python and XlsxWriter, Release 3.0.2

"input title': 'Enter an integer:',
"input message': 'between 1 and 100°',
})

See also Example: Data Validation and Drop Down Lists.

21.2. Data Validation Examples 303

Creating Excel files with Python and XisxWriter, Release 3.0.2

304 Chapter 21. Working with Data Validation

CHAPTER
TWENTYTWO

WORKING WITH CONDITIONAL FORMATTING

Conditional formatting is a feature of Excel which allows you to apply a format to a cell or a range
of cells based on certain criteria.

For example the following rules are used to highlight cells in the conditional format.py example:

worksheet.conditional format('B3:K12', {'type': 'cell!',
'criteria': '>=',
'value': 50,
"format': formatl})

worksheet.conditional format('B3:K12', {'type': 'cell!',
'criteria': '<',
'value': 50,
"format': format2})

Which gives criteria like this:

305

Creating Excel files with Python and XisxWriter, Release 3.0.2

Show formatting rules for: [Current Selection =] Change rule order; 1+ |E|
Rule (applied in order shown) Format Applies to Stop if true
Cell Value >= 50 AaBbCcYyZz |Sheet115B53:5K512 % O
Cell Value < 50 AaBbCcYyZz Sheet1!15BS3:5KS12 E O

+ | = |Edit Rule... Cancel] [—DK—]

And output which looks like this:

306 Chapter 22. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 3.0.2

Cells with values »= 50 are in light red. Values < 50 are in light green.

34

]
28
27
88
24

B
52

RREREEYRTLD

70

< < »»i [sheet1 | Sheet2 | Sheet3 | Sheets [€[
Mormal View

It is also possible to create color scales and data bars:

307

Creating Excel files with Python and XisxWriter, Release 3.0.2

800 | conditional_format.xlsx
Home | Layout | Tables | Charts | SmartArt | b5 I -
A22 110 & (= & A
_-Jhl'.d B | C | D | E | F | =
1 |Examples of color scales and data bars. Default colors.
2 2 Color Scale 3 Color Scale Data Bars
; .
4 I 2
5 3 I 3
6 4 I 4
7 5 5 i 5
8 6 6 i 6
9 7 7 B 7
8 8] 8
g g I g
10 10 [] 10
44 b B J Sheets J Sheetd J shut?j Sheets J_L- . [
Mormal View Rieady w

22.1 The conditional_format() method

The conditional format() worksheet method is used to apply formatting based on user de-
fined criteria to an XlsxWriter file.

The conditional format can be applied to a single cell or a range of cells. As usual you can use A1
or Row/Column notation (Working with Cell Notation).

With Row/Column notation you must specify all four cells in the range: (first row,
first col, last row, last col). If you need to refer to a single cell set the last *
values equal to the first * values. With A1 notation you can refer to a single cell or a range of
cells:

worksheet.conditional format(o, 0, 4, 1, {...})
worksheet